Artificial Intelligence Center, Chungbuk National University Hospital, Cheongju-si, 28644, Chungcheongbuk-do, Republic of Korea.
Chungbuk National University College of Medicine, Cheongju-si, 28644, Chungcheongbuk-do, Republic of Korea.
Sci Rep. 2024 Nov 28;14(1):29610. doi: 10.1038/s41598-024-80792-6.
Stroke is a neurological complication that can occur in patients admitted to the intensive care unit (ICU) for non-neurological conditions, leading to increased mortality and prolonged hospital stays. The incidence of stroke in ICU settings is notably higher compared to the general population, and delays in diagnosis can lead to irreversible neurological damage. Early diagnosis of stroke is critical to protect brain tissue and treat neurological defects. Therefore, we developed a machine learning model to diagnose stroke in patients with acute neurological manifestations in the ICU. We retrospectively collected data on patients' underlying diseases, blood coagulation tests, procedures, and medications before neurological symptom onset from 206 patients at the Chungbuk National University Hospital ICU (July 2020-July 2022) and 45 patients at Chungnam National University Hospital between (July 2020-March 2023). Using the Categorical Boosting (CatBoost) algorithm with Bayesian optimization for hyperparameter selection and k-fold cross-validation to mitigate overfitting, we analyzed model-feature relationships with SHapley Additive exPlanations (SHAP) values. Internal model validation yielded an average accuracy of 0.7560, sensitivity of 0.8959, specificity of 0.7000, and area under the receiver operating characteristic curve (AUROC) of 0.8201. External validation yielded an accuracy of 0.7778, sensitivity of 0.7500, specificity of 0.7931, and an AUROC of 0.7328. These results demonstrated the model's effectiveness in diagnosing stroke in non-neurological ICU patients with acute neurological manifestations using their electronic health records, making it valuable for the early detection of stroke in ICU patients.
中风是一种神经并发症,可发生在因非神经疾病而入住重症监护病房(ICU)的患者中,导致死亡率增加和住院时间延长。与一般人群相比,ICU 环境中的中风发病率明显更高,且诊断延迟可导致不可逆转的神经损伤。早期诊断中风对于保护脑组织和治疗神经缺陷至关重要。因此,我们开发了一种机器学习模型,用于诊断 ICU 中出现急性神经症状的患者中风。我们回顾性地收集了 206 名忠北国立大学医院 ICU 患者(2020 年 7 月至 2022 年 7 月)和 45 名忠南国立大学医院患者(2020 年 7 月至 2023 年 3 月)在出现神经症状前的基础疾病、凝血测试、程序和药物使用数据。使用带有贝叶斯优化的分类提升(CatBoost)算法进行超参数选择和 k 折交叉验证,以减轻过拟合,我们使用 SHapley Additive exPlanations(SHAP)值分析模型特征关系。内部模型验证得到平均准确率为 0.7560、敏感度为 0.8959、特异度为 0.7000 和接受者操作特征曲线(AUROC)下面积为 0.8201。外部验证得到的准确率为 0.7778、敏感度为 0.7500、特异度为 0.7931 和 AUROC 为 0.7328。这些结果表明,该模型使用电子健康记录诊断非神经 ICU 中急性神经症状患者中风的有效性,对于 ICU 患者中风的早期检测具有重要价值。