Suppr超能文献

利用自监督学习改善乳腺癌中肿瘤浸润淋巴细胞评分预测

Improving Tumor-Infiltrating Lymphocytes Score Prediction in Breast Cancer with Self-Supervised Learning.

作者信息

Kim Sijin, Rakib Hasan Kazi, Ando Yu, Ko Seokhwan, Lee Donghyeon, Park Nora Jee-Young, Cho Junghwan

机构信息

Department of Biomedical Science, Kyungpook National University, Daegu 41566, Republic of Korea.

Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.

出版信息

Life (Basel). 2024 Jan 5;14(1):0. doi: 10.3390/life14010090.

Abstract

Tumor microenvironment (TME) plays a pivotal role in immuno-oncology, which investigates the intricate interactions between tumors and the human immune system. Specifically, tumor-infiltrating lymphocytes (TILs) are crucial biomarkers for evaluating the prognosis of breast cancer patients and have the potential to refine immunotherapy precision and accurately identify tumor cells in specific cancer types. In this study, we conducted tissue segmentation and lymphocyte detection tasks to predict TIL scores by employing self-supervised learning (SSL) model-based approaches capable of addressing limited labeling data issues. Our experiments showed a 1.9% improvement in tissue segmentation and a 2% improvement in lymphocyte detection over the ImageNet pre-training model. Using these SSL-based models, we achieved a TIL score of 0.718 with a 4.4% improvement. In particular, when trained with only 10% of the entire dataset, the SwAV pre-trained model exhibited a superior performance over other models. Our work highlights improved tissue segmentation and lymphocyte detection using the SSL model with less labeled data for TIL score prediction.

摘要

肿瘤微环境(TME)在免疫肿瘤学中起着关键作用,免疫肿瘤学研究肿瘤与人体免疫系统之间的复杂相互作用。具体而言,肿瘤浸润淋巴细胞(TILs)是评估乳腺癌患者预后的关键生物标志物,并且有可能提高免疫治疗的精准度,并准确识别特定癌症类型中的肿瘤细胞。在本研究中,我们通过采用基于自监督学习(SSL)模型的方法来进行组织分割和淋巴细胞检测任务,以预测TIL评分,该方法能够解决标记数据有限的问题。我们的实验表明,与ImageNet预训练模型相比,组织分割提高了1.9%,淋巴细胞检测提高了2%。使用这些基于SSL的模型,我们获得了0.718的TIL评分,提高了4.4%。特别是,当仅使用整个数据集的10%进行训练时,SwAV预训练模型表现出优于其他模型的性能。我们的工作突出了使用SSL模型在较少标记数据的情况下改进组织分割和淋巴细胞检测以进行TIL评分预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/278e/11154396/9e0a49a58738/life-14-00090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验