Suppr超能文献

一种使用轻量级深度卷积神经网络进行乳腺癌分类的方法。

An approach for classification of breast cancer using lightweight deep convolution neural network.

作者信息

Elaraby Ahmed, Saad Aymen, Elmannai Hela, Alabdulhafith Maali, Hadjouni Myriam, Hamdi Monia

机构信息

Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt.

Department of Information Technology, Management Technical College, Al-Furat Al-Awsat Technical University, Kufa, Iraq.

出版信息

Heliyon. 2024 Oct 1;10(20):e38524. doi: 10.1016/j.heliyon.2024.e38524. eCollection 2024 Oct 30.

Abstract

The rapid advancement of deep learning has generated considerable enthusiasm regarding its utilization in addressing medical imaging issues. Machine learning (ML) methods can help radiologists to diagnose breast cancer (BCs) barring invasive measures. Informative hand-crafted features are essential prerequisites for traditional machine learning classifiers to achieve accurate results, which are time-consuming to extract. In this paper, our deep learning algorithm is created to precisely identify breast cancers on screening mammograms, employing a training method that effectively utilizes training datasets with either full clinical annotation or solely the cancer status of the entire image. The proposed approach utilizes Lightweight Convolutional Neural Network (LWCNN) that allows automatic extraction features in an end-to-end manner. We have tested LWCNN model in two experiments. In the first experiment, the model was tested with two cases' original and enhancement datasets 1. It achieved 95 %, 93 %, 99 % and 98 % for training and testing accuracy respectively. In the second experiment, the model has been tested with two cases' original and enhancement datasets 2. It achieved 95 %, 91 %, 99 % and 92 % for training and testing accuracy respectively. Our proposed method, which uses various convolutional network to classify screening mammograms achieved exceptional performance when compared to other methods. The findings from these experiments clearly indicate that automatic deep learning techniques can be trained effectively to attain remarkable accuracy across a wide range of mammography datasets. This holds significant promise for improving clinical tools and reducing both false positive and false negative outcomes in screening mammography.

摘要

深度学习的快速发展引发了人们对其用于解决医学成像问题的极大热情。机器学习(ML)方法可以帮助放射科医生在无需侵入性措施的情况下诊断乳腺癌(BC)。信息丰富的手工制作特征是传统机器学习分类器获得准确结果的必要前提,而提取这些特征很耗时。在本文中,我们创建了深度学习算法,用于在筛查乳腺钼靶图像上精确识别乳腺癌,采用的训练方法能有效利用带有完整临床注释或仅带有整个图像癌症状态的训练数据集。所提出的方法利用轻量级卷积神经网络(LWCNN),以端到端的方式自动提取特征。我们在两个实验中测试了LWCNN模型。在第一个实验中,该模型用两个病例的原始数据集和增强数据集1进行测试。其训练和测试准确率分别达到了95%、93%、99%和98%。在第二个实验中,该模型用两个病例的原始数据集和增强数据集2进行测试。其训练和测试准确率分别达到了95%、91%、99%和92%。我们提出的使用各种卷积网络对筛查乳腺钼靶图像进行分类的方法,与其他方法相比表现出色。这些实验的结果清楚地表明,自动深度学习技术可以得到有效训练,在广泛的乳腺钼靶数据集上获得显著的准确率。这对于改进临床工具以及减少筛查乳腺钼靶中的假阳性和假阴性结果具有重大前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/703a/11619963/3abc90e911f6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验