Suppr超能文献

揭开使用观察性数据进行因果研究的克隆-审查-权重方法的神秘面纱:癌症研究人员入门指南

De-Mystifying the Clone-Censor-Weight Method for Causal Research Using Observational Data: A Primer for Cancer Researchers.

作者信息

Gaber Charles E, Ghazarian Armen A, Strassle Paula D, Ribeiro Tatiane B, Salas Maribel, Maringe Camille, Garcia-Albeniz Xabier, Wyss Richard, Du Wei, Lund Jennifer L

机构信息

Department of Pharmacy Systems, Outcomes, and Policy, University of Illinois-Chicago, Chicago, Illinois, USA.

Clinical Safety and Pharmacovigilance, Daiichi Sankyo Inc.,, Basking Ridge, New Jersey, USA.

出版信息

Cancer Med. 2024 Dec;13(23):e70461. doi: 10.1002/cam4.70461.

Abstract

BACKGROUND

Regulators and oncology healthcare providers are increasingly interested in using observational studies of real-world data (RWD) to complement clinical evidence from randomized controlled trials for informed decision-making. To generate valid evidence, RWD studies must be carefully designed to avoid systematic biases. The clone-censor-weight (CCW) method has been proposed to address immortal time and other time-related biases.

METHODS

The objective of this manuscript is to de-mystify the CCW method for cancer researchers by describing and presenting its core components in an accessible and digestible format, using visualizations and examples from cancer-relevant studies. The CCW method has been applied in diverse settings, including investigations of the effects of surgery within a certain time after cancer diagnosis, the continuation of annual screening mammography, and chemotherapy duration on survival.

RESULTS

The method handles complex data wherein the treatment group to which an individual belongs is unknown at the start of follow-up. The three steps of the CCW method involve cloning or duplicating the patient population and assigning one clone to each treatment strategy, artificially censoring the clones when their observed data are inconsistent with the assigned strategy and weighting the cloned and censored population to address selection bias created by the artificial censoring.

CONCLUSIONS

The CCW method is a powerful tool for designing RWD studies in cancer that are free from time-related biases and successfully, to the extent possible, emulate features of a randomized clinical trial.

摘要

背景

监管机构和肿瘤医疗保健提供者越来越有兴趣利用真实世界数据(RWD)的观察性研究来补充随机对照试验的临床证据,以做出明智的决策。为了产生有效的证据,RWD研究必须经过精心设计,以避免系统偏差。克隆-删失-加权(CCW)方法已被提出用于解决不朽时间和其他与时间相关的偏差。

方法

本手稿的目的是通过以一种易于理解和消化的形式描述和展示其核心组成部分,使用来自癌症相关研究的可视化和示例,为癌症研究人员揭开CCW方法的神秘面纱。CCW方法已应用于多种情况,包括对癌症诊断后特定时间内手术效果、年度乳腺钼靶筛查的持续进行以及化疗持续时间对生存影响的研究。

结果

该方法处理复杂数据,其中个体所属的治疗组在随访开始时是未知的。CCW方法的三个步骤包括克隆或复制患者群体,并将一个克隆分配给每种治疗策略,当观察到的数据与分配的策略不一致时对克隆进行人工删失,并对克隆和删失的群体进行加权,以解决人工删失造成的选择偏差。

结论

CCW方法是一种强大的工具,可用于设计癌症领域的RWD研究,这些研究不受与时间相关的偏差影响,并尽可能成功地模拟随机临床试验的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/606e/11623977/c22ba4b8cb05/CAM4-13-e70461-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验