文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Gastrointestinal tract disease classification from wireless capsule endoscopy images based on deep learning information fusion and Newton Raphson controlled marine predator algorithm.

作者信息

Rubab Saddaf, Jamshed Muhammad, Khan Muhammad Attique, Almujally Nouf Abdullah, Damaševičius Robertas, Hussain Amir, Han Neunggyu, Nam Yunyoung

机构信息

Department of Computer Engineering, College of Computing and Informatics, University of Sharjah, Sharjah, 27272, United Arab Emirates.

Center of AI, Prince Mohammad bin Fahd University, Al-Khobar, Saudi Arabia.

出版信息

Sci Rep. 2025 Sep 1;15(1):32180. doi: 10.1038/s41598-025-17204-w.


DOI:10.1038/s41598-025-17204-w
PMID:40890219
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12402331/
Abstract

Worldwide, cancer is one of the leading causes of death in humans. Interobserver variability and specialized experience are key factors in diagnosing gastrointestinal tract (GIT) abnormalities using endoscopic procedures. Due to this diversity, small lesions may go unnoticed, leading to a delay in early diagnosis. Therefore, it is essential to design a computer-aided diagnosis (CAD) system for the detection and classification of GIT diseases at the early stages. This paper proposes a CAD system that combines the feature fusion of modified deep learning models with optimal feature selection. Three publicly available datasets, including Kvasir V1, Kvasir V2, and Hyperkvasir, are utilized in the experimental process. In the proposed method, a contrast enhancement step is performed using the fusion of the top-bottom filtering technique. In the next step, two deep learning models (ResNet18 and ResNet50) are modified with a new layer called entropic field propagation (EFP). The pooling layers are replaced with EFP layers in both models, which are then trained on the selected datasets. In the testing process, trained models are employed, and features are extracted from the deeper layers, which are further refined using the Newton-Raphson Marine Predator Optimization (NRMPO) algorithm. The selected features from both models are finally fused using a novel mean threshold-based fusion approach and passed to machine learning classifiers. The proposed CAD system achieved accuracies of 99.0, 89.6, and 82.7% for Kvasir V1, Kvasir V2, and HyperKvasir, respectively. A detailed ablation study is also conducted for the middle steps that validate these reported accuracies. Conclusion: A comparison is performed with state-of-the-art (SOTA) techniques, showing that the proposed method achieves improved accuracy and precision rates.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/e66f51f4ff45/41598_2025_17204_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/aafbd8b9be1a/41598_2025_17204_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/de167e6fe94d/41598_2025_17204_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/b921d1fdd49b/41598_2025_17204_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/6e71648845a0/41598_2025_17204_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/3755ea41df44/41598_2025_17204_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/43d3638e6656/41598_2025_17204_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/77018aedb079/41598_2025_17204_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/3a77a372229d/41598_2025_17204_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/e38911517e1b/41598_2025_17204_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/db8bb1098dd8/41598_2025_17204_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/32b95a9ba97b/41598_2025_17204_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/4e9ffc4a3e80/41598_2025_17204_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/4c2ba35e1aa4/41598_2025_17204_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/e66f51f4ff45/41598_2025_17204_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/aafbd8b9be1a/41598_2025_17204_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/de167e6fe94d/41598_2025_17204_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/b921d1fdd49b/41598_2025_17204_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/6e71648845a0/41598_2025_17204_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/3755ea41df44/41598_2025_17204_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/43d3638e6656/41598_2025_17204_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/77018aedb079/41598_2025_17204_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/3a77a372229d/41598_2025_17204_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/e38911517e1b/41598_2025_17204_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/db8bb1098dd8/41598_2025_17204_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/32b95a9ba97b/41598_2025_17204_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/4e9ffc4a3e80/41598_2025_17204_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/4c2ba35e1aa4/41598_2025_17204_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/e66f51f4ff45/41598_2025_17204_Fig14_HTML.jpg

相似文献

[1]
Gastrointestinal tract disease classification from wireless capsule endoscopy images based on deep learning information fusion and Newton Raphson controlled marine predator algorithm.

Sci Rep. 2025-9-1

[2]
SNet: A novel convolutional neural network architecture for advanced endoscopic image classification of gastrointestinal disorders.

SLAS Technol. 2025-8

[3]
Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning.

Comput Biol Med. 2024-8

[4]
Deep ensemble learning for gastrointestinal diagnosis using endoscopic image classification.

PeerJ Comput Sci. 2025-4-22

[5]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[6]
Multiclass skin lesion classification and localziation from dermoscopic images using a novel network-level fused deep architecture and explainable artificial intelligence.

BMC Med Inform Decis Mak. 2025-7-1

[7]
Neuro-XAI: Explainable deep learning framework based on deeplabV3+ and bayesian optimization for segmentation and classification of brain tumor in MRI scans.

J Neurosci Methods. 2024-10

[8]
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.

JBJS Essent Surg Tech. 2025-8-15

[9]
A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges.

Biomed Phys Eng Express. 2024-11-20

[10]
A hybrid XAI-driven deep learning framework for robust GI tract disease diagnosis.

Sci Rep. 2025-7-1

本文引用的文献

[1]
Combining the Variational and Deep Learning Techniques for Classification of Video Capsule Endoscopic Images.

J Imaging Inform Med. 2025-1-3

[2]
Interpretable deep learning architecture for gastrointestinal disease detection: A Tri-stage approach with PCA and XAI.

Comput Biol Med. 2025-2

[3]
Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches.

Bioengineering (Basel). 2024-10-16

[4]
Clinical Applications of Artificial Intelligence in Medical Imaging and Image Processing-A Review.

Cancers (Basel). 2024-5-14

[5]
A Comparative Analysis of Optimization Algorithms for Gastrointestinal Abnormalities Recognition and Classification Based on Ensemble XcepNet23 and ResNet18 Features.

Biomedicines. 2023-6-15

[6]
A Comprehensive Analysis of Deep Learning-Based Approaches for Prediction and Prognosis of Infectious Diseases.

Arch Comput Methods Eng. 2023-6-8

[7]
Deep Feature Fusion and Optimization-Based Approach for Stomach Disease Classification.

Sensors (Basel). 2022-4-6

[8]
Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning.

Sci Rep. 2021-11-22

[9]
Kvasir-Capsule, a video capsule endoscopy dataset.

Sci Data. 2021-5-27

[10]
Skin Lesion Segmentation and Multiclass Classification Using Deep Learning Features and Improved Moth Flame Optimization.

Diagnostics (Basel). 2021-4-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索