Suppr超能文献

基于深度学习信息融合与牛顿-拉弗森控制的海洋捕食者算法的无线胶囊内镜图像胃肠道疾病分类

Gastrointestinal tract disease classification from wireless capsule endoscopy images based on deep learning information fusion and Newton Raphson controlled marine predator algorithm.

作者信息

Rubab Saddaf, Jamshed Muhammad, Khan Muhammad Attique, Almujally Nouf Abdullah, Damaševičius Robertas, Hussain Amir, Han Neunggyu, Nam Yunyoung

机构信息

Department of Computer Engineering, College of Computing and Informatics, University of Sharjah, Sharjah, 27272, United Arab Emirates.

Center of AI, Prince Mohammad bin Fahd University, Al-Khobar, Saudi Arabia.

出版信息

Sci Rep. 2025 Sep 1;15(1):32180. doi: 10.1038/s41598-025-17204-w.

Abstract

Worldwide, cancer is one of the leading causes of death in humans. Interobserver variability and specialized experience are key factors in diagnosing gastrointestinal tract (GIT) abnormalities using endoscopic procedures. Due to this diversity, small lesions may go unnoticed, leading to a delay in early diagnosis. Therefore, it is essential to design a computer-aided diagnosis (CAD) system for the detection and classification of GIT diseases at the early stages. This paper proposes a CAD system that combines the feature fusion of modified deep learning models with optimal feature selection. Three publicly available datasets, including Kvasir V1, Kvasir V2, and Hyperkvasir, are utilized in the experimental process. In the proposed method, a contrast enhancement step is performed using the fusion of the top-bottom filtering technique. In the next step, two deep learning models (ResNet18 and ResNet50) are modified with a new layer called entropic field propagation (EFP). The pooling layers are replaced with EFP layers in both models, which are then trained on the selected datasets. In the testing process, trained models are employed, and features are extracted from the deeper layers, which are further refined using the Newton-Raphson Marine Predator Optimization (NRMPO) algorithm. The selected features from both models are finally fused using a novel mean threshold-based fusion approach and passed to machine learning classifiers. The proposed CAD system achieved accuracies of 99.0, 89.6, and 82.7% for Kvasir V1, Kvasir V2, and HyperKvasir, respectively. A detailed ablation study is also conducted for the middle steps that validate these reported accuracies. Conclusion: A comparison is performed with state-of-the-art (SOTA) techniques, showing that the proposed method achieves improved accuracy and precision rates.

摘要

在全球范围内,癌症是人类主要死因之一。观察者间的差异和专业经验是使用内窥镜程序诊断胃肠道(GIT)异常的关键因素。由于这种多样性,小病变可能会被忽视,导致早期诊断延迟。因此,设计一种用于早期检测和分类GIT疾病的计算机辅助诊断(CAD)系统至关重要。本文提出了一种CAD系统,该系统将改进的深度学习模型的特征融合与最优特征选择相结合。在实验过程中使用了三个公开可用的数据集,包括Kvasir V1、Kvasir V2和Hyperkvasir。在所提出的方法中,使用上下滤波技术的融合执行对比度增强步骤。下一步,使用称为熵场传播(EFP)的新层对两个深度学习模型(ResNet18和ResNet50)进行修改。在两个模型中,池化层被EFP层取代,然后在选定的数据集上进行训练。在测试过程中,使用经过训练的模型,并从更深层提取特征,这些特征使用牛顿-拉夫逊海洋捕食者优化(NRMPO)算法进一步优化。最后,使用一种新颖的基于均值阈值的融合方法将两个模型中选定的特征进行融合,并传递给机器学习分类器。所提出的CAD系统在Kvasir V1、Kvasir V2和HyperKvasir上分别达到了99.0%、89.6%和82.7%的准确率。还对中间步骤进行了详细的消融研究,以验证这些报告的准确率。结论:与现有技术(SOTA)进行了比较,结果表明所提出的方法实现了更高的准确率和精确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe4/12402331/aafbd8b9be1a/41598_2025_17204_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验