Alzahrani Salem Mubarak
Mathematics Department, Faculty of Science, Al-Baha University, Saudi Arabia.
Heliyon. 2024 May 13;10(10):e30885. doi: 10.1016/j.heliyon.2024.e30885. eCollection 2024 May 30.
This study analyzes the fractional order SIRC epidemic model under stochastic fractional differential equations in the Caputo sense. This article describes Salmonella infection in animal herds. For the deterministic system, we explain solution positivity and boundness. We also prove that the fractional stochastic solution exists and is unique. Other criteria considered include non-negativity of solutions, local and global stability analyses, Hyers-Ulam stability analysis, and sensitivity analysis for the deterministic system. Furthermore, according to the truncated Ito-Taylor expansion, we apply a numerical method to solve the stochastic fractional SIRC epidemic model, namely the Milstein method, to solve the stochastic fractional SIRC epidemic model. A comparison of the approximation solution and the corresponding deterministic model for different sample paths shows the efficiency of the numerical method. In addition, graphs and error tables provide insight into numerical experiments' results. The stochastic nature of the model allows random fluctuations in Salmonella infection spread. By incorporating uncertainty into the model, we gain a more realistic understanding of the epidemic dynamics and can better evaluate the effectiveness of control measures. Additionally, the numerical method used to solve the stochastic fractional SIRC epidemic model provides valuable insights into the variability of the results. This enhances our ability to make informed decisions about managing and preventing bacterial infections in animal herds.
本研究分析了在Caputo意义下的随机分数阶微分方程中的分数阶SIRC流行病模型。本文描述了动物群体中的沙门氏菌感染情况。对于确定性系统,我们解释了解的正性和有界性。我们还证明了分数阶随机解的存在性和唯一性。考虑的其他标准包括解的非负性、局部和全局稳定性分析、Hyers-Ulam稳定性分析以及确定性系统的敏感性分析。此外,根据截断的伊藤-泰勒展开式,我们应用一种数值方法来求解随机分数阶SIRC流行病模型,即米尔斯坦方法来求解随机分数阶SIRC流行病模型。不同样本路径下近似解与相应确定性模型的比较显示了该数值方法的有效性。此外,图表和误差表提供了对数值实验结果的洞察。该模型的随机性允许沙门氏菌感染传播中的随机波动。通过将不确定性纳入模型,我们对疫情动态有了更现实的理解,并且能够更好地评估控制措施的有效性。此外,用于求解随机分数阶SIRC流行病模型的数值方法为结果的可变性提供了有价值的见解。这增强了我们在管理和预防动物群体细菌感染方面做出明智决策的能力。