Suppr超能文献

衣原体大流行分数模型的数学分析

Mathematical analysis of fractional Chlamydia pandemic model.

作者信息

Alqahtani Zuhur, Almuneef Areej, DarAssi Mahmoud H, AbuHour Yousef, Al-Arydah Mo'tassem, Safi Mohammad A, Al-Hdaibat Bashir

机构信息

Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia.

Department of Basic Sciences, Princess Sumaya University for Technology, P.O.Box 11941, Amman, Jordan.

出版信息

Sci Rep. 2024 Dec 28;14(1):31113. doi: 10.1038/s41598-024-82428-1.

Abstract

In this study, we developed a Caputo-Fractional Chlamydia pandemic model to describe the disease's spread. We demonstrated the model's positivity and boundedness, ensuring biological relevance. The existence and uniqueness of the model's solution were established, and we investigated the stability of the α-fractional order model. Our analysis proved that the disease-free equilibrium point is locally asymptotically stable. Additionally, we showed that the model has a single endemic equilibrium point, which is globally asymptotically stable when [Formula: see text] exceeds 1. Using Latin Hypercube sampling and partial rank correlation coefficients (PRCCs), sensitivity analysis identified key parameters influencing [Formula: see text]. Numerical simulations further illustrated the impact of parameter variations on disease dynamics.

摘要

在本研究中,我们开发了一个Caputo分数阶衣原体大流行模型来描述该疾病的传播。我们证明了模型的正性和有界性,确保了生物学相关性。建立了模型解的存在性和唯一性,并研究了α分数阶模型的稳定性。我们的分析证明无病平衡点是局部渐近稳定的。此外,我们表明该模型有一个单一的地方病平衡点,当[公式:见原文]超过1时,它是全局渐近稳定的。使用拉丁超立方抽样和偏秩相关系数(PRCCs),敏感性分析确定了影响[公式:见原文]的关键参数。数值模拟进一步说明了参数变化对疾病动态的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/170e/11681196/47d3ebb6a702/41598_2024_82428_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验