Suppr超能文献

基于级联全卷积网络的黄斑光学相干断层扫描拓扑正确分割方法

Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.

作者信息

He Yufan, Carass Aaron, Yun Yeyi, Zhao Can, Jedynak Bruno M, Solomon Sharon D, Saidha Shiv, Calabresi Peter A, Prince Jerry L

机构信息

Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA,

Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.

Abstract

Optical coherence tomography (OCT) is used to produce high resolution depth images of the retina and is now the standard of care for ophthalmological assessment. In particular, OCT is used to study the changes in layer thickness across various pathologies. The automated image analysis of these OCT images has primarily been performed with graph based methods. Despite the preeminence of graph based methods, deep learning based approaches have begun to appear within the literature. Unfortunately, they cannot currently guarantee the strict biological tissue order found in human retinas. We propose a cascaded fully convolutional network (FCN) framework to segment eight retina layers and preserve the topological relationships between the layers. The first FCN serves as a segmentation network which takes retina images as input and outputs the segmentation probability maps of the layers. We next perform a topology check on the segmentation and those patches that do not satisfy the topology criterion are passed to a second FCN for topology correction. The FCNs have been trained on Heidelberg Spectralis images and validated on both Heidelberg Spectralis and Zeiss Cirrus images.

摘要

光学相干断层扫描(OCT)用于生成视网膜的高分辨率深度图像,现已成为眼科评估的标准护理手段。特别是,OCT用于研究各种病变中层厚度的变化。这些OCT图像的自动图像分析主要采用基于图形的方法。尽管基于图形的方法占据主导地位,但基于深度学习的方法已开始出现在文献中。不幸的是,它们目前无法保证人类视网膜中严格的生物组织顺序。我们提出了一种级联全卷积网络(FCN)框架,用于分割八个视网膜层并保留各层之间的拓扑关系。第一个FCN用作分割网络,将视网膜图像作为输入,并输出各层的分割概率图。接下来,我们对分割结果进行拓扑检查,那些不满足拓扑标准的补丁将被传递到第二个FCN进行拓扑校正。这些FCN已经在海德堡Spectralis图像上进行了训练,并在海德堡Spectralis和蔡司Cirrus图像上进行了验证。

相似文献

1
Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs.基于级联全卷积网络的黄斑光学相干断层扫描拓扑正确分割方法
Fetal Infant Ophthalmic Med Image Anal (2017). 2017 Sep;10554:202-209. doi: 10.1007/978-3-319-67561-9_23. Epub 2017 Sep 9.
5
Layer boundary evolution method for macular OCT layer segmentation.用于黄斑光学相干断层扫描(OCT)层分割的层边界演化方法
Biomed Opt Express. 2019 Feb 4;10(3):1064-1080. doi: 10.1364/BOE.10.001064. eCollection 2019 Mar 1.
6
Fully Convolutional Boundary Regression for Retina OCT Segmentation.用于视网膜光学相干断层扫描分割的全卷积边界回归
Med Image Comput Comput Assist Interv. 2019 Oct;11764:120-128. doi: 10.1007/978-3-030-32239-7_14. Epub 2019 Oct 10.

引用本文的文献

2
Projected pooling loss for red nucleus segmentation with soft topology constraints.具有软拓扑约束的红核分割的预测池化损失。
J Med Imaging (Bellingham). 2024 Jul;11(4):044002. doi: 10.1117/1.JMI.11.4.044002. Epub 2024 Jul 9.

本文引用的文献

4
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
10
Optical coherence tomography of the human retina.人类视网膜的光学相干断层扫描。
Arch Ophthalmol. 1995 Mar;113(3):325-32. doi: 10.1001/archopht.1995.01100030081025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验