Toban Gabriel, Poudel Khem, Hong Don
Computational & Data Science Ph.D. Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Department of Computer Science, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Bioengineering (Basel). 2023 Sep 11;10(9):1074. doi: 10.3390/bioengineering10091074.
This paper focused on creating an interpretable model for automatic rapid eye movement (REM) and non-REM sleep stage scoring for a single-channel electroencephalogram (EEG). Many methods attempt to extract meaningful information to provide to a learning algorithm. This method attempts to let the model extract the meaningful interpretable information by providing a smaller number of time-invariant signal filters for five frequency ranges using five CNN algorithms. A bi-directional GRU algorithm was applied to the output to incorporate time transition information. Training and tests were run on the well-known sleep-EDF-expanded database. The best results produced 97% accuracy, 93% precision, and 89% recall.
本文着重于为单通道脑电图(EEG)的快速眼动(REM)和非快速眼动睡眠阶段自动评分创建一个可解释模型。许多方法试图提取有意义的信息以提供给学习算法。该方法尝试通过使用五种卷积神经网络(CNN)算法为五个频率范围提供较少数量的时不变信号滤波器,让模型提取有意义的可解释信息。将双向门控循环单元(GRU)算法应用于输出以纳入时间转换信息。在著名的睡眠-EDF扩展数据库上进行了训练和测试。最佳结果产生了97%的准确率、93%的精确率和89%的召回率。