Suppr超能文献

神经肌肉疾病中能量代谢失调的建模:以钙蛋白酶病为例

Modelling energy metabolism dysregulations in neuromuscular diseases: A case study of calpainopathy.

作者信息

Siharath Camille, Biondi Olivier, Peres Sabine

机构信息

Laboratoire de Biométrie et de Biologie Évolutive, UMR CNRS 5558 Université Claude Bernard Lyon 1, 69622, Villeurbanne cedex, France.

ERABLE, INRIA Lyon Centre, 69622, Villeurbanne cedex, France.

出版信息

Heliyon. 2024 Dec 9;10(24):e40918. doi: 10.1016/j.heliyon.2024.e40918. eCollection 2024 Dec 30.

Abstract

Biological modelling helps understanding complex processes, like energy metabolism, by predicting pathway compensations and equilibrium under given conditions. When deciphering metabolic adaptations, traditional experiments face challenges due to numerous enzymatic activities, needing modelling to anticipate pathway behaviours and orientate research. This paper aims to implement a constraint-based modelling method of muscular energy metabolism, adaptable to individual situations, energy demands, and complex disease-specific metabolic alterations like muscular dystrophy calpainopathy. Our calpainopathy-like model not only confirms the ATP production defect under increasing energy demands, but suggests compensatory mechanisms through anaerobic glycolysis. However, excessive glycolysis indicates a need to enhance mitochondrial respiration, preventing excess lactate production common in several diseases. Our model suggests that moderate-intensity physiotherapy, known to improve aerobic performance and anaerobic buffering, combined with increased carbohydrate and amino acid sources, could be a potent therapeutic approach for calpainopathy.

摘要

生物建模有助于通过预测给定条件下的途径补偿和平衡来理解复杂的过程,如能量代谢。在解读代谢适应性时,由于存在众多酶活性,传统实验面临挑战,需要建模来预测途径行为并指导研究。本文旨在实施一种基于约束的肌肉能量代谢建模方法,该方法适用于个体情况、能量需求以及诸如肌肉萎缩性钙蛋白酶病等复杂疾病特异性代谢改变。我们的类钙蛋白酶病模型不仅证实了在能量需求增加时ATP产生缺陷,还通过无氧糖酵解提出了补偿机制。然而,过度糖酵解表明需要增强线粒体呼吸,以防止在几种疾病中常见的过量乳酸产生。我们的模型表明,已知能改善有氧性能和无氧缓冲的中等强度物理治疗,结合增加碳水化合物和氨基酸来源,可能是治疗钙蛋白酶病的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0705/11698924/36a5516cc90b/gr001.jpg

相似文献

1
Modelling energy metabolism dysregulations in neuromuscular diseases: A case study of calpainopathy.
Heliyon. 2024 Dec 9;10(24):e40918. doi: 10.1016/j.heliyon.2024.e40918. eCollection 2024 Dec 30.
3
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
6
Studies on the metabolism of the filarial worm, Litomosoides carinii.
J Exp Med. 1949 Jan;89(1):107-30. doi: 10.1084/jem.89.1.107.
8
Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes.
Comp Biochem Physiol A Mol Integr Physiol. 2002 Oct;133(2):303-21. doi: 10.1016/s1095-6433(02)00162-9.
9
Aerobic Glycolysis in Photoreceptors Supports Energy Demand in the Absence of Mitochondrial Coupling.
Adv Exp Med Biol. 2023;1415:435-441. doi: 10.1007/978-3-031-27681-1_64.

本文引用的文献

1
2
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning.
Nat Commun. 2023 Jul 12;14(1):4139. doi: 10.1038/s41467-023-39840-4.
3
UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.
4
Deep learning allows genome-scale prediction of Michaelis constants from structural features.
PLoS Biol. 2021 Oct 19;19(10):e3001402. doi: 10.1371/journal.pbio.3001402. eCollection 2021 Oct.
5
Mitochondrial dysfunction and consequences in calpain-3-deficient muscle.
Skelet Muscle. 2020 Dec 11;10(1):37. doi: 10.1186/s13395-020-00254-1.
6
BRENDA, the ELIXIR core data resource in 2021: new developments and updates.
Nucleic Acids Res. 2021 Jan 8;49(D1):D498-D508. doi: 10.1093/nar/gkaa1025.
7
Skeletal muscle energy metabolism during exercise.
Nat Metab. 2020 Sep;2(9):817-828. doi: 10.1038/s42255-020-0251-4. Epub 2020 Aug 3.
8
Maximum oxygen consumption and quantification of exercise intensity in untrained male Wistar rats.
Sci Rep. 2020 Jul 13;10(1):11520. doi: 10.1038/s41598-020-68455-8.
10
Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.
PLoS Comput Biol. 2018 Feb 16;14(2):e1006010. doi: 10.1371/journal.pcbi.1006010. eCollection 2018 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验