Bakhchova Liubov, Jonušauskas Linas, Andrijec Dovilė, Kurachkina Marharyta, Baravykas Tomas, Eremin Alexey, Steinmann Ulrike
Institute for Automation Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
Femtika Ltd., LT-10224 Vilnius, Lithuania.
Materials (Basel). 2020 Jul 10;13(14):3076. doi: 10.3390/ma13143076.
Organ-on-a-chip devices are gaining popularity in medical research due to the possibility of performing extremely complex living-body-resembling research in vitro. For this reason, there is a substantial drive in developing technologies capable of producing such structures in a simple and, at the same time, flexible manner. One of the primary challenges in producing organ-on-chip devices from a manufacturing standpoint is the prevalence of layer-by-layer bonding techniques, which result in limitations relating to the applicable materials and geometries and limited repeatability. In this work, we present an improved approach, using three dimensional (3D) laser lithography for the direct integration of a functional part-the membrane-into a closed-channel system. We show that it allows the freely choice of the geometry of the membrane and its integration into a complete organ-on-a-chip system. Considerations relating to sample preparation, the writing process, and the final preparation for operation are given. Overall, we consider that the broader application of 3D laser lithography in organ-on-a-chip fabrication is the next logical step in this field's evolution.
芯片器官装置在医学研究中越来越受欢迎,因为它有可能在体外进行极其复杂的类似活体的研究。因此,人们大力推动开发能够以简单且同时灵活的方式制造这种结构的技术。从制造角度来看,生产芯片器官装置的主要挑战之一是逐层键合技术的普遍存在,这导致了与适用材料和几何形状相关的限制以及有限的可重复性。在这项工作中,我们提出了一种改进方法,使用三维(3D)激光光刻将功能部件——膜直接集成到封闭通道系统中。我们表明,它允许自由选择膜的几何形状并将其集成到完整的芯片器官系统中。文中给出了与样品制备、写入过程以及最终操作准备相关的考虑因素。总体而言,我们认为3D激光光刻在芯片器官制造中的更广泛应用是该领域发展的下一个合理步骤。