Suppr超能文献

迈向数据驱动的电力管理:多区域统一数据与知识图谱。

Towards data-driven electricity management: multi-region uniform data and knowledge graph.

作者信息

Hanžel Vid, Bertalanič Blaž, Fortuna Carolina

机构信息

Jozef Stefan Institute, Ljubljana, 1000, Slovenia.

出版信息

Sci Data. 2025 Jan 9;12(1):38. doi: 10.1038/s41597-024-04310-z.

Abstract

Due to growing population and technological advances, global electricity consumption is increasing. Although CO emissions are projected to plateau or slightly decrease by 2025 due to the adoption of clean energy sources, they are still not decreasing enough to mitigate climate change. The residential sector makes up 25% of global electricity consumption and has potential to improve efficiency and reduce CO footprint without sacrificing comfort. However, a lack of uniform consumption data at the household level spanning multiple regions hinders large-scale studies and robust multi-region model development. This paper introduces a multi-region dataset compiled from publicly available sources and presented in a uniform format. This data enables machine learning tasks such as disaggregation, demand forecasting, appliance ON/OFF classification, etc. Furthermore, we develop an RDF knowledge graph that characterizes the electricity consumption of the households and contextualizes it with household-related properties enabling semantic queries and interoperability with other open knowledge bases like Wikidata and DBpedia. This structured data can be utilized to inform various stakeholders towards data-driven policy and business development.

摘要

由于人口增长和技术进步,全球电力消耗正在增加。尽管由于采用清洁能源,预计到2025年二氧化碳排放量将趋于平稳或略有下降,但仍不足以缓解气候变化。住宅部门占全球电力消耗的25%,有潜力在不牺牲舒适度的情况下提高效率并减少碳足迹。然而,缺乏跨多个地区的家庭层面统一消费数据阻碍了大规模研究和强大的多区域模型开发。本文介绍了一个从公开可用来源编译并以统一格式呈现的多区域数据集。这些数据可用于机器学习任务,如分解、需求预测、电器开/关分类等。此外,我们开发了一个RDF知识图谱,它描述了家庭的电力消耗情况,并将其与家庭相关属性相结合,实现语义查询以及与Wikidata和DBpedia等其他开放知识库的互操作性。这种结构化数据可用于为各利益相关者提供信息,以推动数据驱动的政策和业务发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/709b/11718234/f65794084e9f/41597_2024_4310_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验