Guo Jianmiao, Lin Ziyuan, Che Xiangli, Wang Cong, Wan Tianqing, Yan Jianmin, Zhu Ye, Chai Yang
Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Joint Research Centre of Microelectronics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
ACS Nano. 2025 Jan 21;19(2):2848-2856. doi: 10.1021/acsnano.4c15750. Epub 2025 Jan 10.
Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics. Here, we present a hexagonal boron nitride (h-BN)-assisted process for one-step transfer of van der Waals dielectrics and electrodes in 2D transistors with clean interfaces. The transferred aluminum oxide (AlO), formed by oxidizing aluminum (Al), exhibits exceptional flatness and uniformity, preserving the intrinsic properties of the 2D semiconductors without introducing doping effects. The MoS transistor exhibits an extremely low interface trap density of about 3 × 10 cm eV and a leakage current density down to 10 A cm, which enables effective charge storage at the gate stack. This method allows for the simultaneous fabrication of two damage-free MoS transistors to form a capacitorless 2T0C DRAM cell, enhancing compatibility with 2D materials. The ultralow leakage current optimizes data retention and power efficiency. The fabricated 2T0C DRAM exhibits a rapid write speed of 20 ns, long data retention exceeding 1,000 s, and low energy consumption of approximately 0.2 fJ per write operation. Additionally, it demonstrates 3-bit storage capability and exceptional stability across numerous write/erase cycles.
动态随机存取存储器(DRAM)一直是现代计算的基石,但随着技术不断缩小,它面临着挑战,特别是由于存储电容减小与关断电流增加之间的不匹配。无电容器的2T0C DRAM架构因其通过消除传统电容器而具有提供卓越面积效率和降低刷新率要求的潜力而受到认可。二维(2D)材料的探索进一步增强了缩放可能性,尽管没有悬键使高质量电介质的沉积变得复杂。在这里,我们提出了一种六方氮化硼(h-BN)辅助工艺,用于在具有清洁界面的2D晶体管中一步转移范德华电介质和电极。通过氧化铝(Al)形成的转移氧化铝(AlO)表现出出色的平整度和均匀性,保留了2D半导体的固有特性而不引入掺杂效应。MoS晶体管表现出极低的界面陷阱密度,约为3×10 cm eV,漏电流密度低至10 A cm,这使得能够在栅极堆叠处有效地存储电荷。这种方法允许同时制造两个无损伤的MoS晶体管以形成无电容器的2T0C DRAM单元,增强与2D材料的兼容性。超低漏电流优化了数据保留和功率效率。制造的2T0C DRAM表现出20 ns的快速写入速度、超过1000 s的长数据保留时间以及每次写入操作约为0.2 fJ的低能耗。此外,它展示了3位存储能力以及在众多写/擦除循环中的卓越稳定性。