Suppr超能文献

机器学习在预测人类幸福感方面的应用。

Machine learning in the prediction of human wellbeing.

作者信息

Oparina Ekaterina, Kaiser Caspar, Gentile Niccolò, Tkatchenko Alexandre, Clark Andrew E, De Neve Jan-Emmanuel, D'Ambrosio Conchita

机构信息

London School of Economics, London, UK.

Warwick Business School, Coventry, UK.

出版信息

Sci Rep. 2025 Jan 10;15(1):1632. doi: 10.1038/s41598-024-84137-1.

Abstract

Subjective wellbeing data are increasingly used across the social sciences. Yet, despite the widespread use of such data, the predictive power of approaches commonly used to model wellbeing is only limited. In response, we here use tree-based Machine Learning (ML) algorithms to provide a better understanding of respondents' self-reported wellbeing. We analyse representative samples of more than one million respondents from Germany, the UK, and the United States, using data from 2010 to 2018. We make three contributions. First, we show that ML algorithms can indeed yield better predictive performance than standard approaches, and establish an upper bound on the predictability of wellbeing scores with survey data. Second, we use ML to identify the key drivers of evaluative wellbeing. We show that the variables emphasised in the earlier intuition- and theory-based literature also appear in ML analyses. Third, we illustrate how ML can be used to make a judgement about functional forms, including the existence of satiation points in the effects of income and the U-shaped relationship between age and wellbeing.

摘要

主观幸福感数据在社会科学领域的应用越来越广泛。然而,尽管此类数据被广泛使用,但常用于构建幸福感模型的方法的预测能力却很有限。作为回应,我们在此使用基于树的机器学习(ML)算法,以便更好地理解受访者自我报告的幸福感。我们分析了来自德国、英国和美国的超过100万受访者的代表性样本,使用的是2010年至2018年的数据。我们做出了三点贡献。第一,我们表明ML算法确实能产生比标准方法更好的预测性能,并确定了利用调查数据预测幸福感得分的可预测性上限。第二,我们使用ML来识别评估幸福感的关键驱动因素。我们表明,早期基于直觉和理论的文献中强调的变量也出现在ML分析中。第三,我们说明了如何使用ML对函数形式进行判断,包括收入效应中的饱和点的存在以及年龄与幸福感之间的U形关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4280/11723942/af87fbacb015/41598_2024_84137_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验