Rao Qinhui, Chai Pengxin, Zhang Kai
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
bioRxiv. 2024 Dec 30:2024.12.30.630772. doi: 10.1101/2024.12.30.630772.
Cytoplasmic dynein-1, a microtubule-based motor protein, requires dynactin and an adaptor to form the processive dynein-dynactin-adaptor (DDA) complex. The role of microtubules in DDA assembly has been elusive. Here, we reveal detailed structural insights into microtubule-mediated DDA assembly using cryo-electron microscopy. We find that an adaptor-independent dynein-dynactin complex (DD) predominantly forms on microtubules in an intrinsic 2:1 stoichiometry, induced by spontaneous parallelization of dynein upon microtubule binding. Adaptors can squeeze in and exchange within the assembled microtubule-bound DD complex, which is enabled by relative rotations between dynein and dynactin, and further facilitated by dynein light intermediate chains that assist in an adaptor 'search' mechanism. Our findings elucidate the dynamic adaptability of the dynein transport machinery, and reveal a new mode for assembly of the motile complex.
细胞质动力蛋白-1是一种基于微管的运动蛋白,需要动力肌动蛋白和衔接蛋白才能形成持续性动力蛋白-动力肌动蛋白-衔接蛋白(DDA)复合物。微管在DDA组装中的作用一直难以捉摸。在这里,我们使用冷冻电子显微镜揭示了微管介导的DDA组装的详细结构见解。我们发现,一种不依赖衔接蛋白的动力蛋白-动力肌动蛋白复合物(DD)主要以固有的2:1化学计量比在微管上形成,这是由动力蛋白在结合微管时的自发平行排列诱导的。衔接蛋白可以挤入已组装的与微管结合的DD复合物中并进行交换,这是由动力蛋白和动力肌动蛋白之间的相对旋转实现的,动力蛋白轻中间链进一步促进了这一过程,其有助于衔接蛋白的“搜索”机制。我们的研究结果阐明了动力蛋白运输机制的动态适应性,并揭示了运动复合物组装的新模式。