Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA.
J Struct Biol. 2022 Dec;214(4):107897. doi: 10.1016/j.jsb.2022.107897. Epub 2022 Sep 8.
Revealing high-resolution structures of microtubule-associated proteins (MAPs) is critical for understanding their fundamental roles in various cellular activities, such as cell motility and intracellular cargo transport. Nevertheless, large flexible molecular motors that dynamically bind and release microtubule networks are challenging for cryo-electron microscopy (cryo-EM). Traditional structure determination of MAPs bound to microtubules needs alignment information from the reconstruction of microtubules, which cannot be readily applied to large MAPs without a fixed binding pattern. Here, we developed a comprehensive approach to estimate the microtubule networks (multi-curve fitting), model the tubulin-lattice signals, and remove them (tubulin-lattice subtraction) from the raw cryo-EM micrographs. The approach does not require an ordered binding pattern of MAPs on microtubules, nor does it need a reconstruction of the microtubules. We demonstrated the capability of our approach using the reconstituted outer-arm dynein (OAD) bound to microtubule doublets. The tubulin-lattice subtraction improves the OAD alignment, thus leading to high-resolution reconstructions. In addition, the multi-curve fitting approach provides an accurate automatic alternative method to pick or segment filaments in 2D images and potentially in 3D tomograms. The accuracy of our approach has been demonstrated by using several other biological filaments. Our work provides a new tool to determine high-resolution structures of large MAPs bound to curved microtubule networks.
揭示微管相关蛋白 (MAPs) 的高分辨率结构对于理解它们在细胞运动和细胞内货物运输等各种细胞活动中的基本作用至关重要。然而,对于冷冻电子显微镜 (cryo-EM) 来说,动态结合和释放微管网络的大型柔性分子马达是具有挑战性的。传统的与微管结合的 MAPs 的结构确定需要来自微管重建的对准信息,而对于没有固定结合模式的大型 MAPs,则无法轻易应用该信息。在这里,我们开发了一种全面的方法来估计微管网络(多曲线拟合),对微管晶格信号建模,并从原始冷冻电镜显微照片中去除它们(微管晶格减法)。该方法不需要 MAPs 在微管上的有序结合模式,也不需要微管的重建。我们使用结合到微管二联体上的重组外臂动力蛋白 (OAD) 证明了我们方法的能力。微管晶格减法可改善 OAD 的对准,从而实现高分辨率重建。此外,多曲线拟合方法提供了一种准确的自动替代方法,可以在 2D 图像中(并且可能在 3D 断层扫描中)挑选或分割纤维。我们已经使用其他几种生物纤维证明了我们方法的准确性。我们的工作为确定与弯曲微管网络结合的大型 MAPs 的高分辨率结构提供了一种新工具。