Luan Haijing, Hu Taiyuan, Hu Jifang, Liu Weier, Yang Kaixing, Pei Yue, Li Ruilin, He Jiayin, Gao Yajun, Sun Dawei, Duan Xiaohong, Yan Rui, Zhou S Kevin, Niu Beifang
Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
NPJ Precis Oncol. 2025 May 30;9(1):160. doi: 10.1038/s41698-025-00950-5.
Homologous recombination deficiency (HRD) has been recognized as a key biomarker for poly-ADP ribose polymerase inhibitors (PARPi) and platinum-based chemotherapy in breast cancer (BC). HRD prediction typically relies on molecular biology assays, which have a high turnaround time, and cost. In contrast, tissue sections stained with hematoxylin and eosin (H&E) are ubiquitously available. However, current HRD prediction methods that utilize pathological images are usually based on attention-based multiple instance learning, which is ineffective for modeling the global context of whole slide images (WSIs). To address this challenge, we propose a Sufficient and Representative Transformer (SuRe-Transformer) for WSI-based prediction of HRD. Experimental results demonstrate the superior performance of SuRe-Transformer in predicting HRD status compared to state-of-the-art methods, achieving an AUROC of 0.887 ± 0.034. Furthermore, SuRe-Transformer demonstrates generalizability across multiple external patient cohorts and achieves state-of-the-art performance in predicting several gene mutation biomarkers from BC WSIs.
同源重组缺陷(HRD)已被公认为乳腺癌(BC)中聚ADP核糖聚合酶抑制剂(PARPi)和铂类化疗的关键生物标志物。HRD预测通常依赖于分子生物学检测,这些检测周转时间长且成本高。相比之下,苏木精和伊红(H&E)染色的组织切片随处可得。然而,当前利用病理图像的HRD预测方法通常基于基于注意力的多实例学习,这对于对全切片图像(WSIs)的全局背景进行建模是无效的。为应对这一挑战,我们提出了一种用于基于WSI预测HRD的充分代表性Transformer(SuRe-Transformer)。实验结果表明,与现有方法相比,SuRe-Transformer在预测HRD状态方面具有卓越性能,曲线下面积(AUROC)达到0.887±0.034。此外,SuRe-Transformer在多个外部患者队列中展现出通用性,并在从BC的WSIs预测几种基因突变生物标志物方面达到了现有技术水平。
Genome Med. 2024-3-27
Nat Commun. 2024-2-10
CA Cancer J Clin. 2024