文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用充分且具代表性的Transformer从病理图像预测乳腺癌同源重组缺陷

Breast cancer homologous recombination deficiency prediction from pathological images with a sufficient and representative Transformer.

作者信息

Luan Haijing, Hu Taiyuan, Hu Jifang, Liu Weier, Yang Kaixing, Pei Yue, Li Ruilin, He Jiayin, Gao Yajun, Sun Dawei, Duan Xiaohong, Yan Rui, Zhou S Kevin, Niu Beifang

机构信息

Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

NPJ Precis Oncol. 2025 May 30;9(1):160. doi: 10.1038/s41698-025-00950-5.


DOI:10.1038/s41698-025-00950-5
PMID:40447762
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12125258/
Abstract

Homologous recombination deficiency (HRD) has been recognized as a key biomarker for poly-ADP ribose polymerase inhibitors (PARPi) and platinum-based chemotherapy in breast cancer (BC). HRD prediction typically relies on molecular biology assays, which have a high turnaround time, and cost. In contrast, tissue sections stained with hematoxylin and eosin (H&E) are ubiquitously available. However, current HRD prediction methods that utilize pathological images are usually based on attention-based multiple instance learning, which is ineffective for modeling the global context of whole slide images (WSIs). To address this challenge, we propose a Sufficient and Representative Transformer (SuRe-Transformer) for WSI-based prediction of HRD. Experimental results demonstrate the superior performance of SuRe-Transformer in predicting HRD status compared to state-of-the-art methods, achieving an AUROC of 0.887 ± 0.034. Furthermore, SuRe-Transformer demonstrates generalizability across multiple external patient cohorts and achieves state-of-the-art performance in predicting several gene mutation biomarkers from BC WSIs.

摘要

同源重组缺陷(HRD)已被公认为乳腺癌(BC)中聚ADP核糖聚合酶抑制剂(PARPi)和铂类化疗的关键生物标志物。HRD预测通常依赖于分子生物学检测,这些检测周转时间长且成本高。相比之下,苏木精和伊红(H&E)染色的组织切片随处可得。然而,当前利用病理图像的HRD预测方法通常基于基于注意力的多实例学习,这对于对全切片图像(WSIs)的全局背景进行建模是无效的。为应对这一挑战,我们提出了一种用于基于WSI预测HRD的充分代表性Transformer(SuRe-Transformer)。实验结果表明,与现有方法相比,SuRe-Transformer在预测HRD状态方面具有卓越性能,曲线下面积(AUROC)达到0.887±0.034。此外,SuRe-Transformer在多个外部患者队列中展现出通用性,并在从BC的WSIs预测几种基因突变生物标志物方面达到了现有技术水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/6a6c4e79af8f/41698_2025_950_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/39be7e3a48a4/41698_2025_950_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/90ea391dad7c/41698_2025_950_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/c6d764d4da4d/41698_2025_950_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/2d7a80e21ff2/41698_2025_950_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/6a6c4e79af8f/41698_2025_950_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/39be7e3a48a4/41698_2025_950_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/90ea391dad7c/41698_2025_950_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/c6d764d4da4d/41698_2025_950_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/2d7a80e21ff2/41698_2025_950_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d596/12125258/6a6c4e79af8f/41698_2025_950_Fig5_HTML.jpg

相似文献

[1]
Breast cancer homologous recombination deficiency prediction from pathological images with a sufficient and representative Transformer.

NPJ Precis Oncol. 2025-5-30

[2]
Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides.

J Clin Oncol. 2024-10-20

[3]
Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types.

BMC Biol. 2024-10-8

[4]
Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides.

Eur J Cancer. 2025-2-5

[5]
Poly (adenosine diphosphate-ribose) polymerase inhibitors in the treatment of triple-negative breast cancer with homologous repair deficiency.

Med Res Rev. 2024-11

[6]
Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: a development and validation study.

medRxiv. 2023-3-10

[7]
Comparison of PARPi efficacy according to homologous recombination deficiency biomarkers in patients with ovarian cancer: a systematic review and meta-analysis.

Chin Clin Oncol. 2023-6

[8]
DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer.

Med Image Anal. 2022-7

[9]
Development of model for identifying homologous recombination deficiency (HRD) status of ovarian cancer with deep learning on whole slide images.

J Transl Med. 2025-3-4

[10]
ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer.

Ann Oncol. 2020-12

本文引用的文献

[1]
DeepWalk-Based Graph Embeddings for miRNA-Disease Association Prediction Using Deep Neural Network.

Biomedicines. 2025-2-20

[2]
Graph Convolutional Network with Neural Collaborative Filtering for Predicting miRNA-Disease Association.

Biomedicines. 2025-1-8

[3]
Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types.

BMC Biol. 2024-10-8

[4]
Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response From Histologic Slides.

J Clin Oncol. 2024-10-20

[5]
Deep learning in cancer genomics and histopathology.

Genome Med. 2024-3-27

[6]
Towards a general-purpose foundation model for computational pathology.

Nat Med. 2024-3

[7]
Integrated multiomic profiling of breast cancer in the Chinese population reveals patient stratification and therapeutic vulnerabilities.

Nat Cancer. 2024-4

[8]
Regression-based Deep-Learning predicts molecular biomarkers from pathology slides.

Nat Commun. 2024-2-10

[9]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[10]
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

Cancer Cell. 2023-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索