Suppr超能文献

乳腺癌、结直肠癌或肺癌患者中一种基于机器学习的新型癌症特异性心血管疾病风险评分。

A novel machine learning-based cancer-specific cardiovascular disease risk score among patients with breast, colorectal, or lung cancer.

作者信息

Stabellini Nickolas, Makram Omar M, Kunhiraman Harikrishnan Hyma, Daoud Hisham, Shanahan John, Montero Alberto J, Blumenthal Roger S, Aggarwal Charu, Swami Umang, Virani Salim S, Noronha Vanita, Agarwal Neeraj, Dent Susan, Guha Avirup

机构信息

Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.

Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.

出版信息

JNCI Cancer Spectr. 2025 Jan 3;9(1). doi: 10.1093/jncics/pkaf016.

Abstract

BACKGROUND

Cancer patients have up to a 3-fold higher risk for cardiovascular disease (CVD) than the general population. Traditional CVD risk scores may be less accurate for them. We aimed to develop cancer-specific CVD risk scores and compare them with conventional scores in predicting 10-year CVD risk for patients with breast cancer (BC), colorectal cancer (CRC), or lung cancer (LC).

METHODS

We analyzed adults diagnosed with BC, CRC, or LC between 2005 and 2012. An machine learning (ML) Extreme Gradient Boosting algorithm ranked 40-50 covariates for predicting CVD for each cancer type using SHapley Additive exPlanations values. The top 10 ML-predictors were used to create predictive equations using logistic regression and compared with American College of Cardiology (ACC)/American Heart Association (AHA) Pooled Cohort Equations (PCE), Predicting Risk of cardiovascular disease EVENTs (PREVENT), and Systematic COronary Risk Evaluation-2 (SCORE2) using the area under the curve (AUC).

RESULTS

We included 10 339 patients: 55.5% had BC, 15.6% had CRC, and 29.7% had LC. The actual 10-year CVD rates were: BC 21%, CRC 10%, and LC 28%. The predictors derived from the ML algorithm included cancer-specific and socioeconomic factors. The cancer-specific predictive scores achieved AUCs of 0.84, 0.76, and 0.83 for BC, CRC, and LC, respectively, and outperformed PCE, PREVENT, and SCORE2, increasing the absolute AUC values by up to 0.31 points (with AUC ranging from 0 to 1). Similar results were found when excluding patients with cardiac history or advanced cancer from the analysis.

CONCLUSIONS

Cancer-specific CVD predictive scores outperform conventional scores and emphasize the importance of integrating cancer-related covariates for precise prediction.

摘要

背景

癌症患者患心血管疾病(CVD)的风险比普通人群高2倍。传统的CVD风险评分对他们而言可能不太准确。我们旨在开发针对癌症的CVD风险评分,并在预测乳腺癌(BC)、结直肠癌(CRC)或肺癌(LC)患者的10年CVD风险时,将其与传统评分进行比较。

方法

我们分析了2005年至2012年间被诊断为BC、CRC或LC的成年人。一种机器学习(ML)极端梯度提升算法使用夏普利值(SHapley Additive exPlanations values)对每种癌症类型预测CVD的40 - 50个协变量进行排名。前10个ML预测因子用于通过逻辑回归创建预测方程,并使用曲线下面积(AUC)与美国心脏病学会(ACC)/美国心脏协会(AHA)合并队列方程(PCE)、心血管疾病事件预测(PREVENT)以及系统冠状动脉风险评估 - 2(SCORE2)进行比较。

结果

我们纳入了10339名患者:55.5%患有BC,15.6%患有CRC,29.7%患有LC。实际的10年CVD发生率分别为:BC为21%,CRC为10%,LC为28%。从ML算法得出的预测因子包括癌症特异性和社会经济因素。针对癌症的预测评分在BC、CRC和LC中分别达到了0.84、0.76和0.83的AUC,并且优于PCE、PREVENT和SCORE2,将绝对AUC值提高了多达0.31分(AUC范围为0至1)。在分析中排除有心脏病史或晚期癌症的患者时,也发现了类似结果。

结论

针对癌症的CVD预测评分优于传统评分,并强调了整合癌症相关协变量以进行精确预测的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c0a/11878632/7ca04e4478a5/pkaf016f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验