B&VIIT Eye Center, Seoul, South Korea.
Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South Korea.
Eye (Lond). 2022 Oct;36(10):1959-1965. doi: 10.1038/s41433-021-01795-5. Epub 2021 Oct 5.
BACKGROUND/OBJECTIVES: This study aimed to evaluate a deep learning model for estimating uncorrected refractive error using posterior segment optical coherence tomography (OCT) images.
In this retrospective study, we assigned healthy subjects to development (N = 688 eyes of 344 subjects) and test (N = 248 eyes of 124 subjects) datasets (prospective validation design). We developed and validated OCT-based deep learning models to estimate refractive error. A regression model based on a pretrained ResNet50 architecture was trained using horizontal OCT images to predict the spherical equivalent (SE). The performance of the deep learning model for detecting high myopia was also evaluated. A saliency map was generated using the Grad-CAM technique to visualize the characteristic features.
The developed model showed a low mean absolute error for SE prediction (2.66 D) and a significant Pearson correlation coefficient of 0.588 (P < 0.001) in the test dataset validation. To detect high myopia, the model yielded an area under the receiver operating characteristic curve of 0.813 (95% confidence interval [CI], 0.744-0.881) and an accuracy of 71.4% (95% CI, 65.3-76.9%). The inner retinal layers and relatively steepened curvatures were highlighted using a saliency map to detect high myopia.
A deep learning algorithm showed that OCT could potentially be used as an imaging modality to estimate refractive error. This method will facilitate the evaluation of refractive error to prevent clinicians from overlooking the risks associated with refractive error during OCT assessment.
背景/目的:本研究旨在评估一种使用后节光学相干断层扫描(OCT)图像估算未矫正屈光不正的深度学习模型。
在这项回顾性研究中,我们将健康受试者分配到开发(N=344 名受试者的 688 只眼)和测试(N=124 名受试者的 248 只眼)数据集(前瞻性验证设计)。我们开发并验证了基于 OCT 的深度学习模型来估算屈光不正。使用水平 OCT 图像基于预训练的 ResNet50 架构训练回归模型,以预测等效球镜(SE)。还评估了深度学习模型检测高度近视的性能。使用 Grad-CAM 技术生成显着性图以可视化特征。
在测试数据集验证中,开发的模型显示 SE 预测的平均绝对误差较低(2.66D),Pearson 相关系数显著为 0.588(P<0.001)。为了检测高度近视,该模型的受试者工作特征曲线下面积为 0.813(95%置信区间[CI],0.744-0.881),准确率为 71.4%(95%CI,65.3-76.9%)。使用显着性图突出显示内层视网膜层和相对陡峭的曲率以检测高度近视。
深度学习算法表明 OCT 可能可作为一种成像方式来估算屈光不正。这种方法将有助于评估屈光不正,以防止临床医生在 OCT 评估期间忽略与屈光不正相关的风险。