Suppr超能文献

平衡敏感性和特异性可提高品种基因组预测中的上下排名。

Balancing Sensitivity and Specificity Enhances Top and Bottom Ranking in Genomic Prediction of Cultivars.

作者信息

Montesinos-López Osval A, Alemu Admas, Montesinos-López Abelardo, Montesinos-López José Cricelio, Crossa Jose

机构信息

Facultad de Telemática, Universidad de Colima, Colima 28040, Colima, Mexico.

Statistics Study Program, Universitas Negeri Yogyakarta, Yogyakarta 55281, Yogyakarta, Indonesia.

出版信息

Plants (Basel). 2025 Jan 21;14(3):308. doi: 10.3390/plants14030308.

Abstract

Genomic selection (GS) is a predictive methodology that is revolutionizing plant and animal breeding. However, the practical application of the GS methodology is challenging since a successful implementation requires a good identification of the best lines. For this reason, some approaches have been proposed to be able to select the top (or bottom) lines with more Precision. Despite the varying popularity of methods, with some being notably more efficient than others, this paper delves into the fundamentals of these techniques. We used five models/methods: (1) RC, known as the Bayesian Best Linear Unbiased Predictor (GBLUP); (2) R, which is like RC but uses a threshold; (3) RO, Regression Optimum, that leverages the RC model in its training process to fine-tune the threshold; (4) B, Threshold Bayesian Probit Binary model (TGBLUP) with a threshold of 0.5 to classify the cultivars as top or non-top; (5) BO is the TGBLUP but the threshold used is an optimal probability threshold that guarantees similar Sensitivity and Specificity. We also present a benchmark comparison of existing approaches for selecting the top (or bottom) performers, utilizing five real datasets for comprehensive analysis. For methods that necessitate a rigorous tuning process, we suggest a streamlined tuning approach that significantly decreases implementation time without notably compromising performance. Our analysis revealed that the regression optimal (RO) method outperformed other models across the five real datasets, achieving superior results in terms of the F1 score. Specifically, RO was more effective than models R, B, RC, and BO by 60.87, 42.37, 17.63, and 9.62%, respectively. When looking at the Kappa coefficient, the RO model was better than models B, BO, R, and RC by 37.46, 36.21, 52.18, and 3.95%, respectively. In terms of Sensitivity, the RO model outperformed models B, R, and RC by 145.74, 250.41, and 86.20, respectively. The second-best model was the model BO. It is important to point out that in the first stage, the BO and RO approaches train a classification and regression model, respectively, to classify the lines as the top (bottom) or not the top (not the bottom). However, both the BO and RO approaches optimize a threshold in the second stage to perform the classification of the lines that minimize the difference between the Sensitivity and Specificity. The BO and RO methods are superior for the selection of the top (or bottom) lines. For this reason, we encourage breeders to adopt these approaches to increase genetic gain in plant breeding programs.

摘要

基因组选择(GS)是一种正在彻底改变动植物育种的预测方法。然而,GS方法的实际应用具有挑战性,因为成功实施需要很好地识别最佳品系。因此,已经提出了一些方法以便能够更精确地选择顶级(或底层)品系。尽管各种方法的受欢迎程度不同,有些方法明显比其他方法更有效,但本文深入探讨了这些技术的基本原理。我们使用了五种模型/方法:(1)RC,即贝叶斯最佳线性无偏预测器(GBLUP);(2)R,它与RC类似,但使用一个阈值;(3)RO,回归最优法,在其训练过程中利用RC模型来微调阈值;(4)B,阈值贝叶斯概率二元模型(TGBLUP),阈值为0.5,用于将品种分类为顶级或非顶级;(5)BO是TGBLUP,但使用的阈值是保证相似敏感性和特异性的最优概率阈值。我们还利用五个真实数据集进行全面分析,对选择顶级(或底层)表现者的现有方法进行了基准比较。对于需要严格调优过程的方法,我们提出了一种简化的调优方法,该方法能显著减少实施时间,同时不会明显影响性能。我们的分析表明,回归最优(RO)方法在五个真实数据集上优于其他模型,在F1分数方面取得了更好的结果。具体而言,RO分别比模型R、B、RC和BO有效60.87%、42.37%、17.63%和9.62%。从卡帕系数来看,RO模型分别比模型B、BO、R和RC好37.46%、36.21%、52.18%和3.95%。在敏感性方面,RO模型分别比模型B、R和RC高出145.74%、250.41%和86.20%。第二好的模型是BO模型。需要指出的是,在第一阶段,BO和RO方法分别训练一个分类和回归模型,将品系分类为顶级(底层)或非顶级(非底层)。然而,BO和RO方法在第二阶段都优化一个阈值来对品系进行分类,以使敏感性和特异性之间的差异最小化。BO和RO方法在选择顶级(或底层)品系方面更优越。因此,我们鼓励育种者采用这些方法来提高植物育种计划中的遗传增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20aa/11820940/9fc4803665a7/plants-14-00308-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验