Suppr超能文献

通过整合多层空间和单细胞转录组学对空间异质性进行多尺度剖析

Multiscale Dissection of Spatial Heterogeneity by Integrating Multi-Slice Spatial and Single-Cell Transcriptomics.

作者信息

Chen Yuqi, Zhen Caiwei, Mo Yuanyuan, Liu Juan, Zhang Lihua

机构信息

School of Computer Science, Wuhan University, Wuchang District, Wuhan, Hubei, 430072, China.

出版信息

Adv Sci (Weinh). 2025 Apr;12(15):e2413124. doi: 10.1002/advs.202413124. Epub 2025 Feb 25.

Abstract

The spatial structure of cells is highly organized at multiscale levels from global spatial domains to local cell type heterogeneity. Existing methods for analyzing spatially resolved transcriptomics (SRT) are separately designed for either domain alignment across multiple slices or deconvoluting cell type compositions within a single slice. To this end, a novel deep learning method, SMILE, is proposed which combines graph contrastive autoencoder and multilayer perceptron with local constraints to learn multiscale and informative spot representations. By comparing SMILE with the state-of-the-art methods on simulation and real datasets, the superior performance of SMILE is demonstrated on spatial alignment, domain identification, and cell type deconvolution. The results show SMILE's capability not only in simultaneously dissecting spatial variations at different scales but also in unraveling altered cellular microenvironments in diseased conditions. Moreover, SMILE can utilize prior domain annotation information of one slice to further enhance the performance.

摘要

细胞的空间结构在从全局空间域到局部细胞类型异质性的多尺度水平上高度有序。现有的用于分析空间分辨转录组学(SRT)的方法分别设计用于跨多个切片的域对齐或单个切片内细胞类型组成的反卷积。为此,提出了一种新颖的深度学习方法SMILE,它将图对比自动编码器和多层感知器与局部约束相结合,以学习多尺度和信息丰富的斑点表示。通过在模拟和真实数据集上比较SMILE与最先进的方法,SMILE在空间对齐、域识别和细胞类型反卷积方面表现出卓越的性能。结果表明,SMILE不仅能够同时剖析不同尺度的空间变化,还能揭示疾病状态下改变的细胞微环境。此外,SMILE可以利用一个切片的先验域注释信息来进一步提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1759/12005799/cbe7e1071625/ADVS-12-2413124-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验