Suppr超能文献

使用SpaDAMA改善空间转录组学中的细胞类型组成推断。

Improving cell-type composition inference in spatial transcriptomics with SpaDAMA.

作者信息

Huang Lin, Liu Xiaofei, Zhu Fangfang, Min Wenwen

机构信息

School of Information Science and Engineering, Yunnan University, Kunming, Yunnan, China.

School of Health and Nursing, Yunnan Open University, Kunming, Yunnan, China.

出版信息

PLoS Comput Biol. 2025 Aug 21;21(8):e1013354. doi: 10.1371/journal.pcbi.1013354. eCollection 2025 Aug.

Abstract

Accurate determination of cell-type composition in disease-relevant tissues is essential for identifying potential disease targets and understanding tissue heterogeneity. Most current spatial transcriptomics (ST) technologies lack single-cell resolution, which makes precise cell-type composition identification challenging. Several deconvolution methods have been developed to address this limitation by relying on single-cell RNA sequencing (scRNA-seq) data from the same tissue as a reference to estimate the cell type composition in ST data spots. However, these methods often overlook the inherent differences between scRNA-seq and ST data. To overcome this challenge, we introduce a Domain-Adversarial Masked Autoencoder (SpaDAMA) method. SpaDAMA leverages Domain-Adversarial Learning (DAL) to facilitate effective knowledge transfer from the source domain (pseudo-ST data generated from scRNA-seq) to the target domain (real ST data). Through adversarial training, SpaDAMA harmonizes the distributions of both datasets and maps them onto a unified latent representation, thereby reducing discrepancies in data modalities. Furthermore, to strengthen the model's capability in extracting reliable features from real ST data, SpaDAMA employs masking strategies that effectively minimize noise and mitigate spatial artifacts. We validated SpaDAMA on 32 simulated datasets and 4 real-world datasets, demonstrating its superior performance in cell-type deconvolution and providing a promising tool for spatial transcriptomic analyses.

摘要

准确测定疾病相关组织中的细胞类型组成对于识别潜在疾病靶点和理解组织异质性至关重要。目前大多数空间转录组学(ST)技术缺乏单细胞分辨率,这使得精确识别细胞类型组成具有挑战性。已经开发了几种反卷积方法来解决这一限制,这些方法依赖于来自同一组织的单细胞RNA测序(scRNA-seq)数据作为参考,以估计ST数据点中的细胞类型组成。然而,这些方法往往忽略了scRNA-seq和ST数据之间的内在差异。为了克服这一挑战,我们引入了一种域对抗掩码自动编码器(SpaDAMA)方法。SpaDAMA利用域对抗学习(DAL)促进从源域(由scRNA-seq生成的伪ST数据)到目标域(真实ST数据)的有效知识转移。通过对抗训练,SpaDAMA协调两个数据集的分布,并将它们映射到统一的潜在表示上,从而减少数据模态中的差异。此外,为了增强模型从真实ST数据中提取可靠特征的能力,SpaDAMA采用掩码策略,有效减少噪声并减轻空间伪影。我们在32个模拟数据集和4个真实世界数据集上验证了SpaDAMA,证明了其在细胞类型反卷积方面的卓越性能,并为空间转录组分析提供了一个有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7fa/12393736/1f1b6494ab63/pcbi.1013354.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验