Hirota Naomi, Suzuki Shinya, Arita Takuto, Yagi Naoharu, Kishi Mikio, Semba Hiroaki, Kano Hiroto, Matsuno Shunsuke, Kato Yuko, Otsuka Takayuki, Yajima Junji, Uejima Tokuhisa, Oikawa Yuji, Yamashita Takeshi
Department of Cardiovascular Medicine The Cardiovascular Institute Tokyo Japan.
J Arrhythm. 2025 Mar 4;41(2):e70031. doi: 10.1002/joa3.70031. eCollection 2025 Apr.
The efficacy of artificial intelligence (AI)-enhanced electrocardiography (ECG) for detecting hypertrophic cardiomyopathy (HCM) and its dilated phase (dHCM) has been developed, though specific ECG characteristics associated with these conditions remain insufficiently characterized.
This retrospective study included 19,170 patients, with 140 HCM or dHCM cases, from the Shinken Database (2010-2017). The 140 cases (HCM-total) were categorized into basal-only HCM (HCM-basal, = 75), apical involvement (HCM-apical, = 46), and dHCM ( = 19). We analyzed 438 ECG parameters across the P-wave (110), QRS complex (194), and ST-T segment (134). High parameter importance (HPI) was defined as 1/ > 10 in univariate logistic regression, while multivariate logistic regression was used to determine the area under the receiver operating characteristic curves (AUROC).
In HCM-basal and HCM-apical, HPI was predominantly observed in the ST-T segment (49% and 51%, respectively), followed by the QRS complex (29% and 27%). For dHCM, HPI was lower in the ST-T segment (16%) and QRS complex (22%). The P-wave had low HPI across all subtypes. AUROCs for models with total ECG parameters were 0.925 for HCM-basal, 0.981 for HCM-apical, and 0.969 for dHCM. While AUROCs for the top 10 HPI models were lower than the total ECG parameter model for HCM total, they were comparable across HCM subtypes.
As HCM progresses to dHCM, a shift in HPI from the ST-T segment to the QRS complex provides clinically relevant insights. For HCM subtypes, the top 10 ECG parameters yield predictive performance similar to the full parameter set, supporting efficient approaches for AI-based diagnostic models.
人工智能(AI)增强型心电图(ECG)检测肥厚型心肌病(HCM)及其扩张期(dHCM)的功效已得到发展,尽管与这些病症相关的特定ECG特征仍未得到充分表征。
这项回顾性研究纳入了来自新健数据库(2010 - 2017年)的19170名患者,其中140例为HCM或dHCM病例。这140例病例(HCM总数)被分为仅基底型HCM(HCM - 基底型,n = 75)、心尖受累型(HCM - 心尖型,n = 46)和dHCM(n = 19)。我们分析了P波(110个)、QRS波群(194个)和ST - T段(134个)的438个ECG参数。高参数重要性(HPI)在单因素逻辑回归中定义为1/>10,而多因素逻辑回归用于确定受试者操作特征曲线下面积(AUROC)。
在HCM - 基底型和HCM - 心尖型中,HPI主要出现在ST - T段(分别为49%和51%),其次是QRS波群(29%和27%)。对于dHCM,ST - T段(16%)和QRS波群(22%)的HPI较低。P波在所有亚型中的HPI都较低。包含所有ECG参数的模型的AUROC,HCM - 基底型为0.925,HCM - 心尖型为0.981,dHCM为0.969。虽然前10个HPI模型的AUROC低于HCM总数的所有ECG参数模型,但在HCM各亚型之间具有可比性。
随着HCM进展为dHCM,HPI从ST - T段向QRS波群的转变提供了临床相关见解。对于HCM亚型,前10个ECG参数产生的预测性能与完整参数集相似,支持基于AI的诊断模型的有效方法。