Suppr超能文献

使用卷积神经网络对多导联、双导联和单导联心电图进行肥厚型心肌病扩张期患者的识别。

Identification of patients with dilated phase of hypertrophic cardiomyopathy using a convolutional neural network applied to multiple, dual, and single lead electrocardiograms.

作者信息

Hirota Naomi, Suzuki Shinya, Motogi Jun, Umemoto Takuya, Nakai Hiroshi, Matsuzawa Wataru, Takayanagi Tsuneo, Hyodo Akira, Satoh Keiichi, Arita Takuto, Yagi Naoharu, Kishi Mikio, Semba Hiroaki, Kano Hiroto, Matsuno Shunsuke, Kato Yuko, Otsuka Takayuki, Uejima Tokuhisa, Oikawa Yuji, Hori Takayuki, Matsuhama Minoru, Iida Mitsuru, Yajima Junji, Yamashita Takeshi

机构信息

Department of Cardiovascular Medicine, The Cardiovascular Institute, Tokyo, Japan.

Nihon Kohden Corporation, Tokyo, Japan.

出版信息

Int J Cardiol Heart Vasc. 2023 Apr 25;46:101211. doi: 10.1016/j.ijcha.2023.101211. eCollection 2023 Jun.

Abstract

BACKGROUND

This study sought to develop an artificial intelligence-derived model to detect the dilated phase of hypertrophic cardiomyopathy (dHCM) on digital electrocardiography (ECG) and to evaluate the performance of the model applied to multiple-lead or single-lead ECG.

METHODS

This is a retrospective analysis using a single-center prospective cohort study (Shinken Database 2010-2017, n = 19,170). After excluding those without a normal P wave on index ECG (n = 1,831) and adding dHCM patients registered before 2009 (n = 39), 17,378 digital ECGs were used. Totally 54 dHCM patients were identified of which 11 diagnosed at baseline, 4 developed during the time course, and 39 registered before 2009. The performance of the convolutional neural network (CNN) model for detecting dHCM was evaluated using eight-lead (I, II, and V1-6), single-lead, and double-lead (I, II) ECGs with the five-fold cross validation method.

RESULTS

The area under the curve (AUC) of the CNN model to detect dHCM (n = 54) with eight-lead ECG was 0.929 (standard deviation [SD]: 0.025) and the odds ratio was 38.64 (SD 9.10). Among the single-lead and double-lead ECGs, the AUC was highest with the single lead of V5 (0.953 [SD: 0.038]), with an odds ratio of 58.89 (SD:68.56).

CONCLUSION

Compared with the performance of eight-lead ECG, the most similar performance was achieved with the model with a single V5 lead, suggesting that this single-lead ECG can be an alternative to eight-lead ECG for the screening of dHCM.

摘要

背景

本研究旨在开发一种人工智能衍生模型,用于在数字心电图(ECG)上检测肥厚型心肌病的扩张期(dHCM),并评估该模型应用于多导联或单导联心电图时的性能。

方法

这是一项回顾性分析,使用单中心前瞻性队列研究(Shinken数据库2010 - 2017年,n = 19,170)。在排除索引心电图上无正常P波的患者(n = 1,831)并纳入2009年之前登记的dHCM患者(n = 39)后,使用了17,378份数字心电图。共识别出54例dHCM患者,其中11例在基线时诊断,4例在病程中出现,39例在2009年之前登记。使用八导联(I、II和V1 - 6)、单导联和双导联(I、II)心电图,采用五折交叉验证法评估卷积神经网络(CNN)模型检测dHCM的性能。

结果

CNN模型使用八导联心电图检测dHCM(n = 54)的曲线下面积(AUC)为0.929(标准差[SD]:0.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f50e/10160501/3d729ab272f6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验