Suppr超能文献

鉴定DIO2作为慢性鼻窦炎抑郁症的分子治疗靶点:一项综合生物信息学和实验研究。

Identification of DIO2 as a Molecular Therapeutic Target for Depression in Chronic Rhinosinusitis: A Comprehensive Bioinformatics and Experimental Study.

作者信息

Lv Hao, Liu Peiqiang, Wang Yunfei, Huang Jingyu, Xie Yulie, Guan Mengting, Cong Jianchao, Jiang Yang, Xu Yu

机构信息

Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, China.

Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei, China.

出版信息

Biochem Genet. 2025 Mar 16. doi: 10.1007/s10528-025-11085-4.

Abstract

Chronic rhinosinusitis (CRS) and depression are both common conditions with significant socioeconomic impact. The high co-occurrence of depression in CRS patients suggests a common pathophysiology, but the mechanisms are unclear. This study aimed to identify potential molecular links between the two conditions. We retrieved gene expression datasets for CRS and depression from the GEO database. Using differentially expressed genes (DEGs) analysis and weighted gene co-expression network analysis (WGCNA), we identified co-expression genes associated with CRS and depression. Enrichment analyses including GO, KEGG, and GSEA were performed to explore biological pathways. Machine learning algorithms including random forest and LASSO regression were engaged to screen for shared hub genes predictive of CRS and depression. Single-cell RNA sequencing (scRNA-seq) data were analyzed to delineate the expression profiles of the shared hub genes across different cell types. Animal experiments were employed to validate the role of core genes in CRS-related depression. We identified five shared hub genes: CHRDL1, DIO2, HSD17B6, PDE3A, and PLA2G5, with the TGF-β signaling, cytokine-cytokine interaction receptors, and cell adhesion as key biological pathways. DIO2, as identified by machine learning, is a promising diagnostic biomarker for CRS and depression. The scRNA-seq analysis showed that DIO2 is primarily expressed in neurons and astrocytes. Animal experiments showed that overexpression of DIO2 improved the depressive-like behaviors in CRS mice. This study sheds new light on the molecular basis of the comorbidity between CRS and depression. DIO2 is a potential diagnostic and therapeutic target for CRS patients with comorbid depression.

摘要

慢性鼻-鼻窦炎(CRS)和抑郁症都是常见病症,具有重大的社会经济影响。CRS患者中抑郁症的高共病率提示存在共同的病理生理学机制,但具体机制尚不清楚。本研究旨在确定这两种病症之间潜在的分子联系。我们从基因表达综合数据库(GEO数据库)中检索了CRS和抑郁症的基因表达数据集。通过差异表达基因(DEG)分析和加权基因共表达网络分析(WGCNA),我们确定了与CRS和抑郁症相关的共表达基因。进行了包括基因本体论(GO)、京都基因与基因组百科全书(KEGG)和基因集富集分析(GSEA)在内的富集分析,以探索生物学途径。运用包括随机森林和套索回归在内的机器学习算法筛选出可预测CRS和抑郁症的共同核心基因。分析单细胞RNA测序(scRNA-seq)数据,以描绘共同核心基因在不同细胞类型中的表达谱。采用动物实验来验证核心基因在CRS相关抑郁症中的作用。我们确定了五个共同核心基因:CHRDL1、DIO2、HSD17B6、PDE3A和PLA2G5,其中转化生长因子-β(TGF-β)信号传导、细胞因子-细胞因子相互作用受体和细胞黏附为关键生物学途径。机器学习确定的DIO2是CRS和抑郁症一个有前景的诊断生物标志物。scRNA-seq分析表明,DIO2主要在神经元和星形胶质细胞中表达。动物实验表明,DIO2过表达改善了CRS小鼠的抑郁样行为。本研究为CRS和抑郁症共病的分子基础提供了新的见解。DIO2是CRS合并抑郁症患者潜在的诊断和治疗靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验