Pazos Sebastian, Zhu Kaichen, Villena Marco A, Alharbi Osamah, Zheng Wenwen, Shen Yaqing, Yuan Yue, Ping Yue, Lanza Mario
Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
Nature. 2025 Apr;640(8057):69-76. doi: 10.1038/s41586-025-08742-4. Epub 2025 Mar 26.
Hardware implementations of artificial neural networks (ANNs)-the most advanced of which are made of millions of electronic neurons interconnected by hundreds of millions of electronic synapses-have achieved higher energy efficiency than classical computers in some small-scale data-intensive computing tasks. State-of-the-art neuromorphic computers, such as Intel's Loihi or IBM's NorthPole, implement ANNs using bio-inspired neuron- and synapse-mimicking circuits made of complementary metal-oxide-semiconductor (CMOS) transistors, at least 18 per neuron and six per synapse. Simplifying the structure and size of these two building blocks would enable the construction of more sophisticated, larger and more energy-efficient ANNs. Here we show that a single CMOS transistor can exhibit neural and synaptic behaviours if biased in a specific (unconventional) manner. By connecting one additional CMOS transistor in series, we build a versatile 2-transistor-cell that exhibits adjustable neuro-synaptic response (which we named neuro-synaptic random access memory cell, or NS-RAM cell). This electronic performance comes with a yield of 100% and an ultra-low device-to-device variability, owing to the maturity of the silicon CMOS platform used-no materials or devices alien to the CMOS process are required. These results represent a short-term solution for the implementation of efficient ANNs and an opportunity in terms of CMOS circuit design and optimization for artificial intelligence applications.
人工神经网络(ANNs)的硬件实现——其中最先进的由数百万个电子神经元组成,通过数亿个电子突触相互连接——在一些小规模数据密集型计算任务中已经实现了比传统计算机更高的能源效率。最先进的神经形态计算机,如英特尔的Loihi或IBM的NorthPole,使用由互补金属氧化物半导体(CMOS)晶体管制成的模仿生物神经元和突触的电路来实现人工神经网络,每个神经元至少需要18个晶体管,每个突触需要6个晶体管。简化这两个构建模块的结构和尺寸将能够构建更复杂、更大且更节能的人工神经网络。在这里,我们展示了单个CMOS晶体管如果以特定(非常规)方式偏置,就可以表现出神经和突触行为。通过串联连接一个额外的CMOS晶体管,我们构建了一个通用的双晶体管单元,该单元表现出可调节的神经突触响应(我们将其命名为神经突触随机存取存储器单元,或NS-RAM单元)。由于所使用的硅CMOS平台的成熟度,这种电子性能具有100%的良品率和极低的器件间变异性,不需要任何与CMOS工艺无关的材料或器件。这些结果代表了实现高效人工神经网络的短期解决方案,以及在CMOS电路设计和人工智能应用优化方面的一个机遇。