Suppr超能文献

深度学习在农业中的应用:使用改进的卷积神经网络模型检测水稻病害

Deep Learning Utilization in Agriculture: Detection of Rice Plant Diseases Using an Improved CNN Model.

作者信息

Latif Ghazanfar, Abdelhamid Sherif E, Mallouhy Roxane Elias, Alghazo Jaafar, Kazimi Zafar Abbas

机构信息

Department of Computer Science, Prince Mohammad Bin Fahd University, Khobar 31952, Saudi Arabia.

Department of Computer Sciences and Mathematics, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Québec, QC G7H 2B1, Canada.

出版信息

Plants (Basel). 2022 Aug 28;11(17):2230. doi: 10.3390/plants11172230.

Abstract

Rice is considered one the most important plants globally because it is a source of food for over half the world's population. Like other plants, rice is susceptible to diseases that may affect the quantity and quality of produce. It sometimes results in anywhere between 20-40% crop loss production. Early detection of these diseases can positively affect the harvest, and thus farmers would have to be knowledgeable about the various disease and how to identify them visually. Even then, it is an impossible task for farmers to survey the vast farmlands on a daily basis. Even if this is possible, it becomes a costly task that will, in turn, increases the price of rice for consumers. Machine learning algorithms fitted to drone technology combined with the Internet of Things (IoT) can offer a solution to this problem. In this paper, we propose a Deep Convolutional Neural Network (DCNN) transfer learning-based approach for the accurate detection and classification of rice leaf disease. The modified proposed approach includes a modified VGG19-based transfer learning method. The proposed modified system can accurately detect and diagnose six distinct classes: healthy, narrow brown spot, leaf scald, leaf blast, brown spot, and bacterial leaf blight. The highest average accuracy is 96.08% using the non-normalized augmented dataset. The corresponding precision, recall, specificity, and F1-score were 0.9620, 0.9617, 0.9921, and 0.9616, respectively. The proposed modified approach achieved significantly better results compared with similar approaches using the same dataset or similar-size datasets reported in the extant literature.

摘要

水稻被认为是全球最重要的作物之一,因为它是世界上一半以上人口的食物来源。与其他植物一样,水稻易受疾病影响,这些疾病可能会影响产量和质量。有时会导致20%-40%的作物减产。早期发现这些疾病可以对收成产生积极影响,因此农民必须了解各种疾病以及如何通过肉眼识别它们。即便如此,让农民每天巡查广阔的农田也是一项不可能完成的任务。即使这是可能的,这也会成为一项成本高昂的任务,进而增加消费者购买大米的价格。结合物联网(IoT)的无人机技术所搭载的机器学习算法可以为这个问题提供解决方案。在本文中,我们提出了一种基于深度卷积神经网络(DCNN)迁移学习的方法,用于准确检测和分类水稻叶部病害。改进后的方法包括一种基于VGG19改进的迁移学习方法。所提出的改进系统能够准确检测和诊断六个不同的类别:健康、窄条斑病、叶瘟病、叶稻瘟、褐斑病和细菌性条斑病。使用未归一化的增强数据集时,最高平均准确率为96.08%。相应的精确率、召回率、特异性和F1分数分别为0.9620、0.9617、0.9921和0.9616。与现有文献中使用相同数据集或类似规模数据集的类似方法相比,所提出的改进方法取得了显著更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1201/9460897/c19ed16493c1/plants-11-02230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验