Suppr超能文献

评估与衰老相关的转录变化,并基于人类血液转录组开发年龄预测模型。

Evaluating transcriptional alterations associated with ageing and developing age prediction models based on the human blood transcriptome.

作者信息

Duran Ivan, Tsurumi Amy

机构信息

Department of Surgery, Massachusetts General Hospital and Harvard Medical School, 50 Blossom St., Boston, MA, 02114, USA.

Shriners Hospitals for Children-Boston, 51 Blossom St., Boston, MA, 02114, USA.

出版信息

Biogerontology. 2025 Apr 4;26(2):86. doi: 10.1007/s10522-025-10216-z.

Abstract

Ageing-related DNA methylome and proteome changes and machine-learned ageing clock models have been described previously; however, there is a dearth of ageing clock prediction models based on human blood transcript information. Applying various machine learning algorithms is expected to aid in the development of age prediction models. Using blood transcriptome data from healthy subjects ranging in age from 21 to 90 in the 10 K Immunomes repository, we evaluated differentially regulated transcripts, assessed enriched gene ontology, pathway and disease ontology analysis to characterize biological functions associated with the genes associated with age. Furthermore, we constructed and compared age prediction models developed by applying the Least Absolute Shrinkage and Selection Operator (LASSO), Elastic Net (EN), eXtreme Gradient Boosting (XGBoost) and Light Gradient-Boosting Machine (LightGBM) algorithms. Compared to LASSO (7 genes) and EN (9 genes) regularized regression, XGBoost (142 genes) and LightGBM (149 genes) Gradient Boosted Decision Tree methods performed better in this dataset (training set r = 0.836 (LASSO), 0.837 (EN), 1.000 (XGBoost) and 0.995 (LightGBM); test set: r = 0.883 (LASSO), 0.876 (EN), 0.931 (XGBoost) and 0.915 (LightGBM); external validation set: r = 0.535 (LASSO), 0.534 (EN), 0.591 (XGBoost) and 0.645 (LightGBM)). Blood transcriptome-based age prediction models may provide a simple method to monitor biological ageing, and provide additional molecular insight. Future studies to externally validate these models in various diverse large populations and molecular studies to elucidate the underlying mechanisms by which the gene expression levels may be related to ageing phenotypes would be advantageous.

摘要

此前已有与衰老相关的DNA甲基化组和蛋白质组变化以及机器学习衰老时钟模型的相关描述;然而,基于人类血液转录本信息的衰老时钟预测模型却十分匮乏。应用各种机器学习算法有望助力年龄预测模型的开发。我们使用了10K免疫组库中年龄在21岁至90岁之间的健康受试者的血液转录组数据,评估了差异调节的转录本,进行了富集基因本体、通路和疾病本体分析,以表征与年龄相关基因的生物学功能。此外,我们构建并比较了应用最小绝对收缩和选择算子(LASSO)、弹性网络(EN)、极端梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)算法开发的年龄预测模型。与LASSO(7个基因)和EN(9个基因)正则化回归相比,XGBoost(142个基因)和LightGBM(149个基因)梯度提升决策树方法在该数据集中表现更好(训练集r = 0.836(LASSO)、0.837(EN)、1.000(XGBoost)和0.995(LightGBM);测试集:r = 0.883(LASSO)、0.876(EN)、0.931(XGBoost)和0.915(LightGBM);外部验证集:r = 0.535(LASSO)、0.534(EN)、0.591(XGBoost)和0.645(LightGBM))。基于血液转录组的年龄预测模型可能提供一种监测生物衰老的简单方法,并提供额外的分子见解。未来在各种不同的大群体中对这些模型进行外部验证的研究,以及阐明基因表达水平可能与衰老表型相关的潜在机制的分子研究,将是有益的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验