Suppr超能文献

基于超声心动图图像,利用人工智能诊断重度低梯度与中度主动脉瓣狭窄

Diagnosing Severe Low-Gradient vs Moderate Aortic Stenosis with Artificial Intelligence Based on Echocardiography Images.

作者信息

Wrzosek Michał, Buchwald Mikolaj, Czernik Patryk, Kupinski Szymon, Zatorska Karina, Jasińska Anna, Zakrzewski Dariusz, Pukacki Juliusz, Mazurek Cezary, Pękal Robert, Hryniewiecki Tomasz

机构信息

Department of Valvular Heart Disease, National Institute of Cardiology, Warsaw, Poland.

Poznan Supercomputing and Networking Center, Polish Academy of Sciences, Poznan, Poland.

出版信息

J Imaging Inform Med. 2025 Apr 21. doi: 10.1007/s10278-025-01497-4.

Abstract

Diagnosis of aortic valve stenosis (AS) is performed manually by a physician experienced in echocardiography imaging. A specific subtype of AS, a severe low-gradient AS, is the most challenging one in terms of differentiating it from the moderate AS. In this study, an artificial intelligence (AI)-based model was used to diagnose the severe low-gradient AS in a fully automatic manner. Data from 158 consecutive patients undergoing echocardiography examination to assess AS severity were used. The obtained performance of our fully automatic approach was AUC = 0.719, 95% confidence interval, 0.640-0.798. It is an important step towards a comprehensive and automatic, image-only-based clinical decision support system for determining the presence of AS and its severity, especially in AS subtypes, such as low-gradient AS.

摘要

主动脉瓣狭窄(AS)的诊断由一位在超声心动图成像方面经验丰富的医生手动进行。AS的一种特定亚型,即严重低梯度AS,在将其与中度AS区分开来方面是最具挑战性的。在本研究中,使用了一种基于人工智能(AI)的模型以全自动方式诊断严重低梯度AS。使用了158例连续接受超声心动图检查以评估AS严重程度的患者的数据。我们全自动方法所获得的性能为AUC = 0.719,95%置信区间为0.640 - 0.798。这是朝着建立一个全面、自动、仅基于图像的临床决策支持系统迈出的重要一步,该系统用于确定AS的存在及其严重程度,特别是在AS亚型中,如低梯度AS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验