Suppr超能文献

脓毒症患者中性粒细胞与单核细胞之和与白蛋白比值和全因死亡率之间的关联:一项回顾性队列研究及基于机器学习的预测模型建立

Association between the (neutrophil + monocyte)/albumin ratio and all-cause mortality in sepsis patients: a retrospective cohort study and predictive model establishment according to machine learning.

作者信息

Liu Lulu, Ma Qian, Yu Guangzan, Ji Xuhou, He Hua

机构信息

Cardiac Division of Emergency Intensive Care Unit, Beijing Anzhen Hospital, Capital Medical University, Anzhen Road Second, Chaoyang District, Beijing, 100029, People's Republic of China.

出版信息

BMC Infect Dis. 2025 Apr 22;25(1):579. doi: 10.1186/s12879-025-10969-5.

Abstract

INTRODUCTION

Sepsis is a life-threatening condition characterized by widespread inflammatory response syndrome in the body resulting from infection. Previous studies have demonstrated that some inflammatory factors or nutritional elements contributed to deaths in patients diagnosed with sepsis. Nevertheless, the correlation between the (neutrophil + monocyte)/albumin (NMa) ratio and all-cause mortality of patients diagnosed with sepsis remains unclear. This study aims to investigate the association between the NMa ratio and all-cause mortality in sepsis patients and to develop a predictive model using machine learning techniques.

METHODS

The clinical data were harvested from 13,851 patients with sepsis from the MIMIC-IV (3.1) database. We divided the subjects into four groups based on quartiles of the NMa ratio. The main endpoint was 30-day all-cause mortality, and the secondary endpoint was 90-day all-cause mortality. The relationship between the NMa ratio and adverse prognosis was investigated employing Cox proportional hazard regression, restricted cubic splines, and Kaplan‒Meier curves. Moreover, we employed Boruta algorithm to evaluate the predictive potential of the NMa ratio and established the prediction models utilizing machine learning algorithms.

RESULTS

After adjusting for confounders, each unit increase in the NMa ratio was associated with a 1.8% and 1.6% higher risk of 30-day and 90-day all-cause mortality, respectively (P < 0.001), indicating a linear relationship, and when treated as a categorical variable, the Quartile 4 group demonstrated a significantly higher mortality risk. Boruta feature selection also displayed that the NMa ratio possessed a higher Z score, and the models established utilizing the Cox and Random Forest algorithm identified excellent predictive performance (area under the curve (AUC) = 0.72, AUC = 0.74, respectively).

CONCLUSION

The NMa ratio is strongly and linearly associated with 30-day and 90-day all-cause mortality, with higher levels significantly increasing mortality risk, even after adjusting for potential confounders. Predictive models using Cox regression and Random Forest algorithms showed strong performance, indicating that the NMa ratio could function as a predictor of negative prognosis in patients with sepsis.

摘要

引言

脓毒症是一种危及生命的病症,其特征为身体因感染而产生广泛的炎症反应综合征。先前的研究表明,一些炎症因子或营养元素导致了脓毒症患者的死亡。然而,(中性粒细胞+单核细胞)/白蛋白(NMa)比值与脓毒症患者全因死亡率之间的相关性仍不明确。本研究旨在探讨NMa比值与脓毒症患者全因死亡率之间的关联,并使用机器学习技术建立预测模型。

方法

从MIMIC-IV(3.1)数据库中收集了13851例脓毒症患者的临床数据。我们根据NMa比值的四分位数将受试者分为四组。主要终点是30天全因死亡率,次要终点是90天全因死亡率。采用Cox比例风险回归、受限立方样条和Kaplan-Meier曲线研究NMa比值与不良预后之间的关系。此外,我们使用Boruta算法评估NMa比值的预测潜力,并利用机器学习算法建立预测模型。

结果

在调整混杂因素后,NMa比值每增加一个单位,30天和90天全因死亡率的风险分别增加1.8%和1.6%(P<0.001),表明存在线性关系,并且当作为分类变量处理时,四分位数4组的死亡风险显著更高。Boruta特征选择还显示NMa比值具有更高的Z分数,使用Cox和随机森林算法建立的模型具有出色的预测性能(曲线下面积(AUC)分别为0.72和0.74)。

结论

NMa比值与30天和90天全因死亡率密切相关且呈线性关系,即使在调整潜在混杂因素后,较高水平也会显著增加死亡风险。使用Cox回归和随机森林算法的预测模型表现出色,表明NMa比值可作为脓毒症患者不良预后的预测指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57b8/12012944/2503f4da8596/12879_2025_10969_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验