Suppr超能文献

CS-Net:医学影像中曲线结构的深度学习分割。

CS-Net: Deep learning segmentation of curvilinear structures in medical imaging.

机构信息

Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.

Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.

出版信息

Med Image Anal. 2021 Jan;67:101874. doi: 10.1016/j.media.2020.101874. Epub 2020 Oct 21.

Abstract

Automated detection of curvilinear structures, e.g., blood vessels or nerve fibres, from medical and biomedical images is a crucial early step in automatic image interpretation associated to the management of many diseases. Precise measurement of the morphological changes of these curvilinear organ structures informs clinicians for understanding the mechanism, diagnosis, and treatment of e.g. cardiovascular, kidney, eye, lung, and neurological conditions. In this work, we propose a generic and unified convolution neural network for the segmentation of curvilinear structures and illustrate in several 2D/3D medical imaging modalities. We introduce a new curvilinear structure segmentation network (CS-Net), which includes a self-attention mechanism in the encoder and decoder to learn rich hierarchical representations of curvilinear structures. Two types of attention modules - spatial attention and channel attention - are utilized to enhance the inter-class discrimination and intra-class responsiveness, to further integrate local features with their global dependencies and normalization, adaptively. Furthermore, to facilitate the segmentation of curvilinear structures in medical images, we employ a 1×3 and a 3×1 convolutional kernel to capture boundary features. Besides, we extend the 2D attention mechanism to 3D to enhance the network's ability to aggregate depth information across different layers/slices. The proposed curvilinear structure segmentation network is thoroughly validated using both 2D and 3D images across six different imaging modalities. Experimental results across nine datasets show the proposed method generally outperforms other state-of-the-art algorithms in various metrics.

摘要

从医学和生物医学图像中自动检测曲线结构,例如血管或神经纤维,是与许多疾病的管理相关的自动图像解释的关键初始步骤。这些曲线器官结构的形态变化的精确测量为临床医生提供了信息,以了解例如心血管、肾脏、眼睛、肺部和神经状况的机制、诊断和治疗。在这项工作中,我们提出了一种用于曲线结构分割的通用和统一的卷积神经网络,并在几种 2D/3D 医学成像方式中进行了说明。我们引入了一种新的曲线结构分割网络(CS-Net),它在编码器和解码器中包含了自注意力机制,以学习曲线结构的丰富层次表示。两种类型的注意力模块 - 空间注意力和通道注意力 - 被用于增强类间判别和类内响应能力,以进一步自适应地整合局部特征与其全局依赖关系和归一化。此外,为了促进医学图像中曲线结构的分割,我们使用 1×3 和 3×1 卷积核来捕获边界特征。此外,我们将 2D 注意力机制扩展到 3D,以增强网络在不同层/切片之间聚合深度信息的能力。我们使用六种不同的成像模式的 2D 和 3D 图像对所提出的曲线结构分割网络进行了全面验证。在九个数据集上的实验结果表明,该方法在各种指标上普遍优于其他最先进的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验