Ren Sheng, Liao Xingyu, Liu Farong, Li Jie, Gao Xin, Yu Bin
School of Data Science, Qingdao University of Science and Technology, Qingdao, 266061, China.
School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.
Adv Sci (Weinh). 2025 Jun;12(21):e2413545. doi: 10.1002/advs.202413545. Epub 2025 Apr 30.
Latest developments in spatial transcriptomics enable thoroughly profiling of gene expression while preserving tissue microenvironment. Connecting gene expression with spatial arrangement is key for precise spatial domain identification, enhancing the comprehension of tissue microenvironments and biological processes. However, accurately analyzing spatial domains with similar gene expression and histological features is still challenging. This study introduces STMIGCL, a novel framework that leverages a multi-view graph convolutional network and implicit contrastive learning. First, it creates neighbor graphs from gene expression and spatial coordinates, and then combines these with gene expression through multi-view learning to learn low-dimensional representations. To further refine the obtained low-dimensional representations, a graph contrastive learning method with contrastive enhancement in the latent space is employed, aiming to better capture critical information in the data and improve the accuracy and discriminative power of the embeddings. Finally, an attention mechanism is used to adaptively integrate different views, capturing the importance of spots in various views to obtain the final spot representation. Experimental data confirms that STMIGCL significantly enhances spatial domain recognition precision and outperforms all baseline methods in tasks such as trajectory inference and Spatially Variable Genes (SVGs) recognition.
空间转录组学的最新进展能够在保留组织微环境的同时,对基因表达进行全面分析。将基因表达与空间排列联系起来是精确识别空间域、增强对组织微环境和生物过程理解的关键。然而,准确分析具有相似基因表达和组织学特征的空间域仍然具有挑战性。本研究介绍了STMIGCL,这是一种利用多视图图卷积网络和隐式对比学习的新型框架。首先,它从基因表达和空间坐标创建邻域图,然后通过多视图学习将这些与基因表达相结合,以学习低维表示。为了进一步优化获得的低维表示,采用了一种在潜在空间中具有对比增强的图对比学习方法,旨在更好地捕捉数据中的关键信息,提高嵌入的准确性和判别力。最后,使用注意力机制自适应地整合不同视图,捕捉各视图中斑点的重要性,以获得最终的斑点表示。实验数据证实,STMIGCL显著提高了空间域识别精度,并且在轨迹推断和空间可变基因(SVG)识别等任务中优于所有基线方法。