Seo Pukyeong, Kim Hyun, Kim Kyung Hwan
Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Republic of Korea.
Biomed Eng Lett. 2024 Oct 1;15(1):143-157. doi: 10.1007/s13534-024-00431-x. eCollection 2025 Jan.
This study aims to create a fatigue recognition system that utilizes electroencephalogram (EEG) signals to assess a driver's physiological and mental state, with the goal of minimizing the risk of road accidents by detecting driver fatigue regardless of physical cues or vehicle attributes. A fatigue state recognition system was developed using transfer learning applied to partial ensemble averaged EEG power spectral density (PSD). The study utilized layer-wise relevance propagation (LRP) analysis to identify critical cortical regions and frequency bands for effective fatigue discrimination. A total of 21 participants were included in the study, and data augmentation techniques were used to enhance the system's classification accuracy. The results indicate a significant improvement in classification accuracy, particularly with the application of data augmentation. The classification accuracies were 99.2 ± 2.3% for the training data, 97.9 ± 3.1% for the validation data, and 96.9 ± 3.3% for the test data. This study advances the development of personalized EEG-based fatigue monitoring systems that have the potential to improve road safety and reduce accidents. The findings highlight the utility of EEG signals in detecting fatigue and the benefits of data augmentation in improving system performance. Further research is recommended to optimize data augmentation strategies and enhance the scalability and efficiency of the system.
The online version contains supplementary material available at 10.1007/s13534-024-00431-x.
本研究旨在创建一种疲劳识别系统,该系统利用脑电图(EEG)信号来评估驾驶员的生理和心理状态,目的是通过检测驾驶员疲劳来降低道路事故风险,而不考虑身体线索或车辆属性。利用迁移学习应用于部分总体平均脑电图功率谱密度(PSD)开发了一种疲劳状态识别系统。该研究利用逐层相关传播(LRP)分析来识别有效区分疲劳的关键皮层区域和频段。共有21名参与者纳入该研究,并使用数据增强技术来提高系统的分类准确率。结果表明分类准确率有显著提高,特别是在应用数据增强的情况下。训练数据的分类准确率为99.2±2.3%,验证数据的分类准确率为97.9±3.1%,测试数据的分类准确率为96.9±3.3%。本研究推动了基于脑电图的个性化疲劳监测系统的发展,该系统有可能提高道路安全性并减少事故。研究结果突出了脑电图信号在检测疲劳方面的效用以及数据增强在提高系统性能方面的益处。建议进一步研究以优化数据增强策略并提高系统的可扩展性和效率。
在线版本包含可在10.1007/s13534-024-00431-x获取的补充材料。