Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
Neural Netw. 2022 Sep;153:235-253. doi: 10.1016/j.neunet.2022.06.008. Epub 2022 Jun 14.
A brain-computer interface (BCI) enables a user to communicate directly with an external device, e.g., a computer, using brain signals. It can be used to research, map, assist, augment, or repair human cognitive or sensory-motor functions. A closed-loop BCI system performs signal acquisition, temporal filtering, spatial filtering, feature engineering and classification, before sending out the control signal to an external device. Transfer learning (TL) has been widely used in motor imagery (MI) based BCIs to reduce the calibration effort for a new subject, greatly increasing their utility. This tutorial describes how TL can be considered in as many components of a BCI system as possible, and introduces a complete TL pipeline for MI-based BCIs. Examples on two MI datasets demonstrated the advantages of considering TL in multiple components of MI-based BCIs. Especially, integrating data alignment and sophisticated TL approaches can significantly improve the classification performance, and hence greatly reduces the calibration effort.
脑机接口(BCI)使使用者能够使用脑信号直接与外部设备(例如计算机)进行通信。它可用于研究、绘制、辅助、增强或修复人类认知或感觉运动功能。闭环 BCI 系统在向外部设备发送控制信号之前,执行信号采集、时间滤波、空间滤波、特征工程和分类。迁移学习(TL)已广泛应用于基于运动想象(MI)的脑机接口中,以减少新对象的校准工作量,极大地提高了它们的实用性。本教程介绍了如何在脑机接口系统的尽可能多的组件中考虑 TL,并介绍了基于 MI 的脑机接口的完整 TL 管道。两个 MI 数据集上的示例展示了在基于 MI 的脑机接口的多个组件中考虑 TL 的优势。特别是,将数据对齐和复杂的 TL 方法集成在一起可以显著提高分类性能,从而大大减少了校准工作量。