Kim Ye Ji, Kent Noah, Vargas Paniagua Emmanuel, Driscoll Nicolette, Tabet Anthony, Koehler Florian, Malkin Elian, Frey Ethan, Manthey Marie, Sahasrabudhe Atharva, Cannon Taylor M, Nagao Keisuke, Mankus David, Bisher Margaret, de Nola Giovanni, Lytton-Jean Abigail, Signorelli Lorenzo, Gregurec Danijela, Anikeeva Polina
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Nanotechnol. 2025 Jan;20(1):121-131. doi: 10.1038/s41565-024-01798-9. Epub 2024 Oct 11.
Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core-double-shell FeO-CoFeO-BaTiO architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.
植入电极的深部脑刺激已经改变了神经科学研究以及神经和精神疾病的治疗方式。发现侵入性较小的深部脑刺激替代方法可能会扩大其临床和研究应用。磁场通过纳米材料介导转导为电势已被探索作为一种远程神经调节手段。在此,我们合成了具有核 - 双壳FeO - CoFeO - BaTiO结构(直径250纳米,厚度50纳米)且具有高效磁电耦合的磁电纳米盘(MENDs)。我们发现,尽管单个粒子的电势低于神经元兴奋阈值,但在以1μg/mm的密度用MENDs修饰的神经元中,对磁场刺激有强烈反应。我们提出了一个重复阈下去极化模型,该模型与电缆理论相结合,支持我们在体外的观察结果,并为体内磁电刺激提供了依据。以1mg/ml的浓度注射到基因完整小鼠的腹侧被盖区或丘脑底核中,MENDs分别能够远程控制奖赏或运动行为。这些发现为磁电神经调节在神经科学研究中的应用进行机制优化奠定了基础。
Nat Nanotechnol. 2025-1
bioRxiv. 2023-12-25
Science. 2015-3-12
Brain Stimul. 2024
Res Sq. 2025-6-19
Front Hum Neurosci. 2025-4-28
Front Neurosci. 2025-4-28
J Am Chem Soc. 2025-4-23
Nanoscale Horiz. 2025-3-24
Acc Chem Res. 2024-10-15
Nat Neurosci. 2023-11
IEEE J Solid-State Circuits. 2022-3
Prog Neurobiol. 2022-11
Front Neural Circuits. 2021