文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁电纳米盘实现无转基因无线神经调节。

Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation.

作者信息

Kim Ye Ji, Kent Noah, Vargas Paniagua Emmanuel, Driscoll Nicolette, Tabet Anthony, Koehler Florian, Malkin Elian, Frey Ethan, Manthey Marie, Sahasrabudhe Atharva, Cannon Taylor M, Nagao Keisuke, Mankus David, Bisher Margaret, de Nola Giovanni, Lytton-Jean Abigail, Signorelli Lorenzo, Gregurec Danijela, Anikeeva Polina

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Nanotechnol. 2025 Jan;20(1):121-131. doi: 10.1038/s41565-024-01798-9. Epub 2024 Oct 11.


DOI:10.1038/s41565-024-01798-9
PMID:39394431
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11750723/
Abstract

Deep brain stimulation with implanted electrodes has transformed neuroscience studies and treatment of neurological and psychiatric conditions. Discovering less invasive alternatives to deep brain stimulation could expand its clinical and research applications. Nanomaterial-mediated transduction of magnetic fields into electric potentials has been explored as a means for remote neuromodulation. Here we synthesize magnetoelectric nanodiscs (MENDs) with a core-double-shell FeO-CoFeO-BaTiO architecture (250 nm diameter and 50 nm thickness) with efficient magnetoelectric coupling. We find robust responses to magnetic field stimulation in neurons decorated with MENDs at a density of 1 µg mm despite individual-particle potentials below the neuronal excitation threshold. We propose a model for repetitive subthreshold depolarization that, combined with cable theory, supports our observations in vitro and informs magnetoelectric stimulation in vivo. Injected into the ventral tegmental area or the subthalamic nucleus of genetically intact mice at concentrations of 1 mg ml, MENDs enable remote control of reward or motor behaviours, respectively. These findings set the stage for mechanistic optimization of magnetoelectric neuromodulation towards applications in neuroscience research.

摘要

植入电极的深部脑刺激已经改变了神经科学研究以及神经和精神疾病的治疗方式。发现侵入性较小的深部脑刺激替代方法可能会扩大其临床和研究应用。磁场通过纳米材料介导转导为电势已被探索作为一种远程神经调节手段。在此,我们合成了具有核 - 双壳FeO - CoFeO - BaTiO结构(直径250纳米,厚度50纳米)且具有高效磁电耦合的磁电纳米盘(MENDs)。我们发现,尽管单个粒子的电势低于神经元兴奋阈值,但在以1μg/mm的密度用MENDs修饰的神经元中,对磁场刺激有强烈反应。我们提出了一个重复阈下去极化模型,该模型与电缆理论相结合,支持我们在体外的观察结果,并为体内磁电刺激提供了依据。以1mg/ml的浓度注射到基因完整小鼠的腹侧被盖区或丘脑底核中,MENDs分别能够远程控制奖赏或运动行为。这些发现为磁电神经调节在神经科学研究中的应用进行机制优化奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/481e44df8a32/41565_2024_1798_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/2ef5d47166c8/41565_2024_1798_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/65c79d183f58/41565_2024_1798_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/0e1c5601ccef/41565_2024_1798_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/53ace22788ab/41565_2024_1798_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/481e44df8a32/41565_2024_1798_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/2ef5d47166c8/41565_2024_1798_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/65c79d183f58/41565_2024_1798_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/0e1c5601ccef/41565_2024_1798_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/53ace22788ab/41565_2024_1798_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9be8/11750723/481e44df8a32/41565_2024_1798_Fig5_HTML.jpg

相似文献

[1]
Magnetoelectric nanodiscs enable wireless transgene-free neuromodulation.

Nat Nanotechnol. 2025-1

[2]
Magnetoelectric Nanodiscs Enable Wireless Transgene-Free Neuromodulation.

bioRxiv. 2023-12-25

[3]
Wireless stimulation of the subthalamic nucleus with nanoparticles modulates key monoaminergic systems similar to contemporary deep brain stimulation.

Behav Brain Res. 2023-4-27

[4]
Wireless magnetothermal deep brain stimulation.

Science. 2015-3-12

[5]
Controlling action potentials with magnetoelectric nanoparticles.

Brain Stimul. 2024

[6]
In Vivo Wireless Brain Stimulation via Non-invasive and Targeted Delivery of Magnetoelectric Nanoparticles.

Neurotherapeutics. 2021-7

[7]
Wireless-Powering Deep Brain Stimulation Platform Based on 1D-Structured Magnetoelectric Nanochains Applied in Antiepilepsy Treatment.

ACS Nano. 2023-8-22

[8]
Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles.

Brain Stimul. 2022

[9]
Nanoscale Magneto-mechanical-genetics of Deep Brain Neurons Reversing Motor Deficits in Parkinsonian Mice.

Nano Lett. 2024-1-10

[10]
Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study.

J Neurosci Methods. 2010-1-29

引用本文的文献

[1]
An ultrasound-scanning light source.

Res Sq. 2025-6-19

[2]
Magnetic-Driven Torque-Induced Electrical Stimulation for Millisecond-Scale Wireless Neuromodulation.

Adv Healthc Mater. 2025-8

[3]
Open-source magnetic system for wireless neuromodulations in vitro and for untethered brain stimulation in vivo.

Sci Rep. 2025-5-22

[4]
Self-Aligned Multilayered Nitrogen Vacancy Diamond Nanoparticles for High Spatial Resolution Magnetometry of Microelectronic Currents.

Nano Lett. 2025-6-11

[5]
Advances in magnetic field approaches for non-invasive targeting neuromodulation.

Front Hum Neurosci. 2025-4-28

[6]
Computational insights into magnetoelectric nanoparticles for neural stimulation.

Front Neurosci. 2025-4-28

[7]
Magnetite Nanodiscs Activate Mechanotransductive Calcium Signaling in Diverse Cell Types.

J Am Chem Soc. 2025-4-23

[8]
Foundational insights for theranostic applications of magnetoelectric nanoparticles.

Nanoscale Horiz. 2025-3-24

[9]
A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease.

NPJ Parkinsons Dis. 2024-10-23

[10]
Magnetoelectrics for Implantable Bioelectronics: Progress to Date.

Acc Chem Res. 2024-10-15

本文引用的文献

[1]
Non-invasive temporal interference electrical stimulation of the human hippocampus.

Nat Neurosci. 2023-11

[2]
Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator.

Neuron. 2023-5-17

[3]
Magnetic-field-synchronized wireless modulation of neural activity by magnetoelectric nanoparticles.

Brain Stimul. 2022

[4]
Wireless neuromodulation in vitro and in vivo by intrinsic TRPC-mediated magnetomechanical stimulation.

Commun Biol. 2022-11-2

[5]
Magnetoelectric Bio-Implants Powered and Programmed by a Single Transmitter for Coordinated Multisite Stimulation.

IEEE J Solid-State Circuits. 2022-3

[6]
Mechanisms of microglia-mediated synapse turnover and synaptogenesis.

Prog Neurobiol. 2022-11

[7]
How Does Deep Brain Stimulation Change the Course of Parkinson's Disease?

Mov Disord. 2022-8

[8]
A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves.

Nat Biomed Eng. 2022-6

[9]
From Synapses to Circuits, Astrocytes Regulate Behavior.

Front Neural Circuits. 2021

[10]
Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms.

Brain Stimul. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索