AlMatri Enas, Madkhali Nawal, Mustafa Sakina, Lemine O M, Algessair Saja, Mustafa Alia, Ali Rizwan, El-Boubbou Kheireddine
Department of Chemistry, College of Science, University of Bahrain, Bahrain 32038, Bahrain.
Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia.
Polymers (Basel). 2025 Apr 25;17(9):1171. doi: 10.3390/polym17091171.
The continuous discovery of novel effective antibacterial agents using nano-based materials is of high significance. In this study, we utilized Polymerylated divalent-metal-doped ferrite nanoparticles (PMFeO NPs) and studied their antibacterial inhibition effects. Different panels of PVP- and PEG-coated metal-doped MFeO (M ≅ Co, Ni, and Zn) were prepared via the (KHB) methodology and thoroughly analyzed using TEM, XRD, FTIR, and VSM. The as-synthesized doped ferrites displayed stable quasi-spherical particles (7-15 nm in size), well-ordered crystalline cubic spinel phases, and high-saturation magnetizations reaching up to 68 emu/g. The antibacterial efficacy of the doped ferrites was then assessed against a Gram-negative bacterial strain. The results demonstrated that both metal doping and polymer functionalization influence the antimicrobial efficacies and performance of the ferrite NPs. The presence of the PVP polymer along with the divalent metal ions, particularly Co and Ni, resulted in the highest antibacterial inhibition and effective inactivation of the bacterial cells. The antibacterial performance was as follows: PVP-CoFeO > PVP-NiFeO > PVP-ZnFeO. Lastly, cell viability assays conducted on human breast fibroblast (HBF) cells confirmed the good safety profiles of the doped ferrites. These interesting results demonstrate the distinctive inhibitory features of the biocompatible metal-doped ferrites in enhancing bacterial killing and highlights their promising potential as effective antimicrobial agents, with possible applications in areas such as water disinfection, biomedical devices, and antimicrobial coatings.
利用纳米基材料持续发现新型有效抗菌剂具有重要意义。在本研究中,我们使用了聚合二价金属掺杂铁氧体纳米颗粒(PMFeO NPs)并研究了它们的抗菌抑制效果。通过(KHB)方法制备了不同的聚乙烯吡咯烷酮(PVP)和聚乙二醇(PEG)包覆的金属掺杂MFeO(M≅Co、Ni和Zn),并使用透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和振动样品磁强计(VSM)进行了全面分析。合成的掺杂铁氧体呈现出稳定的准球形颗粒(尺寸为7 - 15纳米)、有序的晶体立方尖晶石相以及高达68emu/g的高饱和磁化强度。然后评估了掺杂铁氧体对革兰氏阴性细菌菌株的抗菌效果。结果表明,金属掺杂和聚合物功能化均会影响铁氧体纳米颗粒的抗菌效果和性能。PVP聚合物与二价金属离子(特别是Co和Ni)的存在导致了最高的抗菌抑制效果以及细菌细胞的有效失活。抗菌性能如下:PVP-CoFeO > PVP-NiFeO > PVP-ZnFeO。最后,对人乳腺成纤维细胞(HBF)进行的细胞活力测定证实了掺杂铁氧体具有良好的安全性。这些有趣的结果证明了生物相容性金属掺杂铁氧体在增强细菌杀灭方面具有独特的抑制特性,并突出了它们作为有效抗菌剂的潜在应用前景,可能应用于水消毒、生物医学设备和抗菌涂层等领域。
Materials (Basel). 2022-4-20
Nanomaterials (Basel). 2023-2-13
Environ Sci Pollut Res Int. 2023-5
ACS Omega. 2023-12-21
Antibiotics (Basel). 2022-8-9