Suppr超能文献

基于模拟辅助铸造的汽车后地板用铝硅合金力学性能及微观组织演变研究

Research on the Mechanical Properties and Microstructural Evolution of Al-Si Alloy for Automotive Rear Floors Based on Simulation-Assisted Casting.

作者信息

Gao Liang, Wang Qiang, Yang Qin, Liu Wenjun, Jiang Bin, Qin Yongrui, Chen Haoming, Lan Sha

机构信息

Chongqing Changan Automobile Co., Ltd., No. 260, Jianxindong Road, Jiangbei District, Chongqing 400030, China.

College of Materials Science and Engineering, Chongqing University of Technology, No. 69, Hongguang Road, Banan District, Chongqing 400054, China.

出版信息

Materials (Basel). 2025 May 6;18(9):2143. doi: 10.3390/ma18092143.

Abstract

Al-Si alloys are essential in manufacturing automotive body structural components due to their superior casting properties, high specific strength, and excellent corrosion resistance. The microstructural evolution and mechanical properties of Al-Si alloy used in rear floors were systematically investigated based on a casting simulation. The results indicate that the alloy microstructure consists of α-Al, an Al-Si eutectic, and the Al(Mn,Fe)Si intermetallic phases. The accumulation of Al(Mn, Fe)Si intermetallic compounds increases toward the end of the filling process, leading to a reduction in mechanical properties. The optimal filling distance of the alloy ranges from 210 mm to 450 mm, while the optimal thickness ranges from 3.36 mm to 4.14 mm. With a filling distance and thickness increase, the yield strength, tensile strength, and elongation of the alloy initially increase and then decrease. The optimal properties are achieved when the filling distance is 210 mm and the thickness is 4.14 mm, with a yield strength of 122.35 MPa, a tensile strength of 258.43 MPa, and an elongation of 11.60%. At the same filling distance, near the gate position, when the thickness increases from 4.1 mm to 5.3 mm, the alloy's tensile strength and elongation decrease. However, at positions farther from the gate, when the thickness increases from 2.94 mm to 4.93 mm, both the tensile strength and elongation of the alloy increase. This study provides a theoretical basis for the process design of large integrated die-casting components for new energy vehicles and supports the development of a high-strength ductile Al-Si alloy material system.

摘要

铝硅合金因其优异的铸造性能、高比强度和出色的耐腐蚀性,在汽车车身结构部件制造中至关重要。基于铸造模拟,系统研究了后地板用铝硅合金的微观组织演变和力学性能。结果表明,该合金微观组织由α-Al、铝硅共晶和Al(Mn,Fe)Si金属间相组成。在充型过程接近尾声时,Al(Mn,Fe)Si金属间化合物的聚集增多,导致力学性能下降。该合金的最佳充型距离为210毫米至450毫米,最佳厚度为3.36毫米至4.14毫米。随着充型距离和厚度的增加,合金的屈服强度、抗拉强度和伸长率起初增加,随后下降。当充型距离为210毫米、厚度为4.14毫米时,可获得最佳性能,屈服强度为122.35兆帕,抗拉强度为258.43兆帕,伸长率为11.60%。在相同的充型距离下,靠近浇口位置,当厚度从4.1毫米增加到5.3毫米时,合金的抗拉强度和伸长率下降。然而,在离浇口较远的位置,当厚度从2.94毫米增加到4.93毫米时,合金的抗拉强度和伸长率均增加。本研究为新能源汽车大型一体化压铸部件的工艺设计提供了理论依据,并为高强度韧性铝硅合金材料体系的开发提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d5/12072987/67524afcb6f7/materials-18-02143-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验