文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Green synthesis of silver nanoparticles using cocoon extract of Bombyx mori L.: therapeutic potential in antibacterial, antioxidant, anti-inflammatory, and anti-tumor applications.

作者信息

Elsaffany Ahmed H, Abdelaziz Ahmed E M, Zahra Abdullah A, Mekky Alsayed E

机构信息

Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.

Department of Botany and Microbiology, Faculty of Science, Port-Said University, 23 December Street, P.O. Box 42522, Port-Said, Egypt.

出版信息

BMC Biotechnol. 2025 May 14;25(1):38. doi: 10.1186/s12896-025-00971-9.


DOI:10.1186/s12896-025-00971-9
PMID:40369507
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12077009/
Abstract

Bombyx mori silk is one of the most extensively studied types of silk due to its unique mechanical properties and biocompatibility, which have enabled its Utilization in medical applications Including surgical sutures since the second century. In the present study, a new method for the biosynthesis of silver nanoparticles (AgNPs) was explored by applying Bombyx mori cocoon extract as a sustainable and eco-friendly biological source. Unlike previous studies that primarily utilized plant or microbial extracts, this approach offers a more efficient alternative due to the unique protein and polyphenol content of silk cocoons, which enhances the stability and biological properties of the biosynthesized nanoparticles. The resulting AgNPs exhibited significant antibacterial, antioxidant, anti-inflammatory, and cytotoxic properties, opening new avenues for their therapeutic applications. This study expands the range of biological materials used in AgNP synthesis and provides deeper insight into how different bioactive components influence their functional properties. In this study, AgNPs were biosynthesized by mechanically processing extracted raw silk material with silver nitrate (AgNO₃). The synthesized nanoparticles were characterized by implementing several physicochemical techniques, including UV-visible spectrophotometry, FTIR, and XRD, and their morphology was examined through Transmission Electron Microscopy (TEM). The obtained AgNPs displayed a distinct absorption peak at 420 nm, with a particle size ranging between 5 and 25 nm, and displayed characteristic FTIR and XRD patterns typical of silver nanoparticles. The biosynthesized AgNPs demonstrated significant antimicrobial activity against Staphylococcus aureus (ATCC25923), Staphylococcus haemolyticus (ATCC29968), Escherichia coli (ATCC8739), and Klebsiella pneumoniae (ATCC2146). The antioxidant potential, assessed via the DPPH assay, yielded an IC50 value of 4.94 µg/ml, while the anti-inflammatory effect, evaluated using the membrane stabilization technique, showed an IC50 of 7.14 µg/ml. Additionally, AgNPs exhibited notable cytotoxic properties against Caco-2 and PANC1 cell lines, with IC50 values of 177.24 ± 2.01 µg/ml and 208.15 ± 2.79 µg/ml, respectively. Conversely, their impact on normal HFB-4 cells was minimal, with an IC50 of 582.33 ± 6.37 µg/ml, indicating a favorable safety profile. These observations highlight the multifunctional potential of silk-derived AgNPs, suggesting their applicability in various biomedical fields.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/b37e93b9a028/12896_2025_971_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/ab622e7dae3b/12896_2025_971_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/d519ae3d5518/12896_2025_971_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/797604653a53/12896_2025_971_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/1ea059bfebca/12896_2025_971_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/b18dfed35d5d/12896_2025_971_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/d35abf9b4e99/12896_2025_971_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/04e484a923a0/12896_2025_971_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/bfb0c4f337ac/12896_2025_971_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/6be7a9eac526/12896_2025_971_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/eca08055920e/12896_2025_971_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/b37e93b9a028/12896_2025_971_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/ab622e7dae3b/12896_2025_971_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/d519ae3d5518/12896_2025_971_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/797604653a53/12896_2025_971_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/1ea059bfebca/12896_2025_971_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/b18dfed35d5d/12896_2025_971_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/d35abf9b4e99/12896_2025_971_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/04e484a923a0/12896_2025_971_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/bfb0c4f337ac/12896_2025_971_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/6be7a9eac526/12896_2025_971_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/eca08055920e/12896_2025_971_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c4c/12077009/b37e93b9a028/12896_2025_971_Sch1_HTML.jpg

相似文献

[1]
Green synthesis of silver nanoparticles using cocoon extract of Bombyx mori L.: therapeutic potential in antibacterial, antioxidant, anti-inflammatory, and anti-tumor applications.

BMC Biotechnol. 2025-5-14

[2]
Green Synthesis of Dracocephalum kotschyi-Coated Silver Nanoparticles: Antimicrobial, Antioxidant, and Anticancer Potentials.

Med Sci Monit. 2024-10-3

[3]
Synthesis and Characterization of Silver Nanoparticles from and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity.

Molecules. 2022-9-24

[4]
Eco-friendly biosynthesis of silver nanoparticles using marine-derived Fusarium exquisite: optimization, characterization, and evaluation of antimicrobial, antioxidant, and cytotoxic activities.

World J Microbiol Biotechnol. 2025-5-6

[5]
Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles.

Sci Rep. 2022-2-14

[6]
Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.

Int J Nanomedicine. 2021

[7]
Green synthesis of silver nanoparticles (AgNPs) and chitosan-coated silver nanoparticles (CS-AgNPs) using Ferula gummosa Boiss. gum extract: A green nano drug for potential applications in medicine.

Int J Biol Macromol. 2025-2

[8]
Bioinspired multifunctional silver nanoparticles by Smilax Chenensis and their enhanced biomedical and catalytic applications.

Sci Rep. 2024-12-2

[9]
Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents.

Drug Dev Ind Pharm. 2019-9-2

[10]
Biogenic Synthesis of Silver Nanoparticles using (Decne): Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

Pharm Nanotechnol. 2023

本文引用的文献

[1]
Evaluating antibacterial and antioxidant properties of sericin recovered from cocoons of Bombyx mori, Gonometa postica and Samia ricini in Kenya.

PLoS One. 2024-12-31

[2]
Green-synthesis of silver nanoparticles AgNPs from Podocarpus macrophyllus for targeting GBM and LGG brain cancers via NOTCH2 gene interactions.

Sci Rep. 2024-10-26

[3]
Synthesis, characterization and application of silk sericin-based silver nanocomposites for antibacterial and food coating solutions.

RSC Adv. 2024-10-21

[4]
Silver Nanoparticles: Synthesis, Structure, Properties and Applications.

Nanomaterials (Basel). 2024-8-31

[5]
Anti-Inflammatory and Antimicrobial Activity of Silver Nanoparticles Green-Synthesized Using Extracts of Different Plants.

Nanomaterials (Basel). 2024-8-25

[6]
Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles.

Front Pharmacol. 2024-8-8

[7]
Plant-based synthesis, characterization approaches, applications and toxicity of silver nanoparticles: A comprehensive review.

J Biotechnol. 2024-11-10

[8]
UV-spectrophotometric and spectroscopic observed Vachellia nilotica and Nigella sativa formulations regularized the histopathological and biochemical parameters during wound contraction.

Microsc Res Tech. 2025-1

[9]
Radical scavenging potential of spectrophotometric, spectroscopic, microscopic, and EDX observed zinc oxide nanoparticles from leaves, buds, and flowers extract of Bauhinia Variegata Linn: A thorough comparative insight.

Microsc Res Tech. 2024-9

[10]
Sustainable Silk-Based Particulate Systems for the Controlled Release of Pharmaceuticals and Bioactive Agents in Wound Healing and Skin Regeneration.

Int J Mol Sci. 2024-3-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索