Suppr超能文献

一种预测非小细胞肺癌患者免疫治疗反应和预后的新模型。

A novel model for predicting immunotherapy response and prognosis in NSCLC patients.

作者信息

Zang Ting, Luo Xiaorong, Mo Yangyu, Lin Jietao, Lu Weiguo, Li Zhiling, Zhou Yingchun, Chen Shulin

机构信息

The First Clinical Medical College and the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.

The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.

出版信息

Cancer Cell Int. 2025 May 15;25(1):178. doi: 10.1186/s12935-025-03800-3.

Abstract

BACKGROUND

How to screen beneficiary populations has always been a clinical challenge in the treatment of non-small-cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs). Routine blood tests, due to their advantages of being minimally invasive, convenient, and capable of reflecting tumor dynamic changes, have potential value in predicting the efficacy of ICIs treatment. However, there are few models based on routine blood tests to predict the efficacy and prognosis of immunotherapy.

METHODS

Patients were randomly divided into training cohort and validation cohort at a ratio of 2:1. The random forest algorithm was applied to select important variables based on routine blood tests, and a random forest (RF) model was constructed to predict the efficacy and prognosis of ICIs treatment. For efficacy prediction, we assessed receiver operating characteristic (ROC) curves, decision curve analysis (DCA) curves, clinical impact curve (CIC), integrated discrimination improvement (IDI) and net reclassification improvement (NRI) compared with the Nomogram model. For prognostic evaluation, we utilized the C-index and time-dependent C-index compared with the Nomogram model, Lung Immune Prognostic Index (LIPI) and Systemic Inflammatory Score (SIS). Patients were classified into high-risk and low-risk groups based on RF model, then the Kaplan-Meier (K-M) curve was used to analyze the differences in progression-free survival (PFS) and overall survival (OS) of patients between the two groups.

RESULTS

The RF model incorporated RDW-SD, MCV, PDW, CD3CD8, APTT, P-LCR, Ca, MPV, CD4/CD8 ratio, and AST. In the training and validation cohorts, the RF model exhibited an AUC of 1.000 and 0.864, and sensitivity/specificity of (100.0%, 100.0%) and (70.3%, 93.5%), respectively, which had superior performance compared to the Nomogram model (training cohort: AUC = 0.531, validation cohort: AUC = 0.552). The C-index of the RF model was 0.803 in the training cohort and 0.712 in the validation cohort, which was significantly higher than Nomogram model, LIPI and SIS. K-M survival curves revealed that patients in the high-risk group had significantly shorter PFS/OS than those in the low-risk group.

CONCLUSIONS

In this study, we developed a novel model (RF model) to predict the response to immunotherapy and prognosis in NSCLC patients. The RF model demonstrated better predictive performance for immunotherapy responses than the Nomogram model. Moreover, when predicting the prognosis of immunotherapy, it outperformed the Nomogram model, LIPI, and SIS.

摘要

背景

在使用免疫检查点抑制剂(ICI)治疗非小细胞肺癌(NSCLC)时,如何筛选受益人群一直是临床面临的挑战。常规血液检测因其具有微创、便捷且能够反映肿瘤动态变化的优点,在预测ICI治疗疗效方面具有潜在价值。然而,基于常规血液检测来预测免疫治疗疗效和预后的模型较少。

方法

患者按2:1的比例随机分为训练队列和验证队列。应用随机森林算法基于常规血液检测选择重要变量,并构建随机森林(RF)模型来预测ICI治疗的疗效和预后。对于疗效预测,与列线图模型相比,我们评估了受试者操作特征(ROC)曲线、决策曲线分析(DCA)曲线、临床影响曲线(CIC)、综合判别改善(IDI)和净重新分类改善(NRI)。对于预后评估,与列线图模型、肺免疫预后指数(LIPI)和全身炎症评分(SIS)相比,我们使用了C指数和时间依赖性C指数。根据RF模型将患者分为高风险组和低风险组,然后使用Kaplan-Meier(K-M)曲线分析两组患者无进展生存期(PFS)和总生存期(OS)的差异。

结果

RF模型纳入了红细胞分布宽度标准差(RDW-SD)、平均红细胞体积(MCV)、血小板分布宽度(PDW)、CD3CD8、活化部分凝血活酶时间(APTT)、血小板大型比率(P-LCR)、钙(Ca)、平均血小板体积(MPV)、CD4/CD8比值和谷草转氨酶(AST)。在训练队列和验证队列中,RF模型的曲线下面积(AUC)分别为1.000和0.864,灵敏度/特异性分别为(100.0%,100.0%)和(70.3%,93.5%),与列线图模型相比表现更优(训练队列:AUC = 0.531,验证队列:AUC = 0.552)。RF模型在训练队列中的C指数为0.803,在验证队列中为0.712,显著高于列线图模型、LIPI和SIS。K-M生存曲线显示,高风险组患者的PFS/OS明显短于低风险组患者。

结论

在本研究中,我们开发了一种新的模型(RF模型)来预测NSCLC患者的免疫治疗反应和预后。与列线图模型相比,RF模型在免疫治疗反应预测方面表现出更好的性能。此外,在预测免疫治疗预后时,它优于列线图模型、LIPI和SIS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0811/12083170/27a0b324d190/12935_2025_3800_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验