Suppr超能文献

利用社交媒体数据了解 COVID-19 对居民饮食行为的影响:观察性研究。

Leveraging Social Media Data to Understand the Impact of COVID-19 on Residents' Dietary Behaviors: Observational Study.

作者信息

Li Chuqin, Jordan Alexis, Ge Yaorong, Park Albert

机构信息

Department of Software and Information Systems, College of Computing and Informatics, University of North Carolina, Charlotte, NC, United States.

School of Data Science, College of Computing and Informatics, University of North Carolina, Charlotte, NC, United States.

出版信息

J Med Internet Res. 2025 May 23;27:e51638. doi: 10.2196/51638.

Abstract

BACKGROUND

The COVID-19 pandemic has inflicted global devastation, infecting over 750 million and causing 6 million deaths. In an effort to control the spread of the virus, governments around the world implemented a variety of measures, including stay-at-home orders, school closures, and mask mandates. These measures had a substantial impact on dietary behavior, with individuals discussing more home-cooked meals and snacking on social media.

OBJECTIVE

The study explores pandemic-induced dietary behavior changes using Twitter images and text, particularly in relation to obesity, to inform interventions and understand societal influences on eating habits. Additionally, the study investigates the impact of COVID-19 on emotions and eating patterns.

METHODS

In this study, we collected approximately 200,000 tweets related to food between May and July in 2019, 2020, and 2021. We used transfer learning and a pretrained ResNet-101 neural network to classify images into 4 health categories: definitely healthy, healthy, unhealthy, and definitely unhealthy. We then used the state obesity rates from the Behavioral Risk Factor Surveillance System (BRFSS) to assess the correlation between state obesity rates and dietary images on Twitter. The study further investigates the effects of COVID-19 on emotional changes and their relation to eating patterns via sentiment analysis. Furthermore, we illustrated how the popularity of meal terms and health categories changed over time, considering varying time zones by incorporating geolocation data.

RESULTS

A significant correlation was observed between state obesity rates and the percentages of definitely healthy (r=-0.360, P=.01) and definitely unhealthy (r=0.306, P=.03) food images in 2019. However, no trend was observed in 2020 and 2021, despite higher obesity rates. A significant (P<.001) increase in the percentage of healthy food consumption was observed during (39.99% in 2020) and after the shutdown (39.32% in 2021), as compared with the preshutdown period (37.69% in 2019). Sentiment analysis from 2019, 2020, and 2021 revealed a more positive sentiment associated with dietary posts from 2019. This was the case regardless of the healthiness of the food mentioned in the tweet. Last, we found a shift in consumption time and an increase in snack consumption during and after the pandemic. People ate breakfast later (ie, from 7 AM to 8 AM in 2019 to 8 AM to 9 AM in 2020 and 2021) and dinner earlier (ie, from 6 PM to 7 PM in 2019, to 5 PM to 6 PM in 2020). Snacking frequency also increased. Taken together, dietary behavior shifted toward healthier choices at the population level during and after the COVID-19 shutdown, with potential for long-term health consequences.

CONCLUSIONS

We were able to observe people's eating habits using social media data to investigate the effects of COVID-19 on dietary behaviors. Deep learning for image classification and text analysis was applied, revealing a decline in users' emotions and a change in dietary patterns and attitudes during and after the lockdown period. The findings of this study suggest the need for further investigations into the factors that influence dietary behaviors and the pandemic's implications of these changes for long-term health outcomes.

摘要

背景

新冠疫情给全球带来了巨大破坏,感染人数超过7.5亿,导致600万人死亡。为控制病毒传播,世界各国政府采取了多种措施,包括居家令、学校关闭和强制佩戴口罩。这些措施对饮食行为产生了重大影响,人们在社交媒体上更多地讨论家常饭菜和零食。

目的

本研究利用推特上的图片和文字,探讨疫情引发的饮食行为变化,特别是与肥胖相关的变化,为干预措施提供信息,并了解社会对饮食习惯的影响。此外,该研究还调查了新冠疫情对情绪和饮食模式的影响。

方法

在本研究中,我们收集了2019年、2020年和2021年5月至7月期间约20万条与食物相关的推文。我们使用迁移学习和预训练的ResNet-101神经网络将图片分类为4种健康类别:绝对健康、健康、不健康和绝对不健康。然后,我们使用行为风险因素监测系统(BRFSS)的州肥胖率来评估州肥胖率与推特上饮食图片之间的相关性。该研究还通过情感分析进一步调查了新冠疫情对情绪变化的影响及其与饮食模式的关系。此外,我们通过纳入地理位置数据,考虑不同时区,说明了饮食术语和健康类别的受欢迎程度随时间的变化情况。

结果

2019年,州肥胖率与绝对健康食物图片的百分比(r=-0.360,P=0.01)和绝对不健康食物图片的百分比(r=0.306,P=0.03)之间存在显著相关性。然而,尽管2020年和更高的肥胖率,却未观察到明显趋势。与关闭前时期(2019年为37.69%)相比,在关闭期间(2020年为39.99%)和关闭后(2021年为39.32%),健康食品消费百分比显著增加(P<0.001)。对2019年、2020年和2021年的情感分析显示,与2019年的饮食推文相关的情感更为积极。无论推文中提到的食物健康与否,都是如此。最后,我们发现疫情期间和之后消费时间发生了变化,零食消费增加。人们早餐吃得更晚(即从2019年的上午7点到2020年和2021年的上午8点),晚餐吃得更早(即从2019年的下午6点到2020年下午5点到6点)。零食频率也增加了。总体而言,在新冠疫情关闭期间和之后,饮食行为在人群层面转向了更健康的选择,可能会对长期健康产生影响。

结论

我们能够利用社交媒体数据观察人们的饮食习惯,以调查新冠疫情对饮食行为的影响。应用深度学习进行图像分类和文本分析,揭示了封锁期间及之后用户情绪的下降以及饮食模式和态度的变化。本研究结果表明,需要进一步调查影响饮食行为的因素以及这些变化对长期健康结果的疫情影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5583/12144483/ea4f72363e4f/jmir_v27i1e51638_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验