Suppr超能文献

SpaGraphCCI:通过基于图注意力网络的共卷积特征整合进行空间细胞间通信推断

SpaGraphCCI: Spatial cell-cell communication inference through GAT-based co-convolutional feature integration.

作者信息

Zhang Han, Cui Ting, Xu Xiaoqiang, Sui Guangyu, Fang Qiaoli, Yang Guanghao, Gong Yizhen, Yang Sanqiao, Lv Yufei, Shang Desi

机构信息

School of Computer, University of South China, Hengyang, Hunan, China.

The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

出版信息

IET Syst Biol. 2025 Jan-Dec;19(1):e70000. doi: 10.1049/syb2.70000.

Abstract

Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell-cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space. SpaGraphCCI can achieve significant performance on datasets from multiple platforms including single-cell resolution datasets (AUC reaches 0.860-0.907) and spot resolution datasets (AUC ranges from 0.880 to 0.965). SpaGraphCCI shows better performance by comparing with the existing deep learning-based spatial cell communication inference methods. SpaGraphCCI is robust to high noise and can effectively improve the inference of CCIs. We test on a human breast cancer dataset and show that SpaGraphCCI can not only identify proximal cell communication but also infer new distal interactions. In summary, SpaGraphCCI provides a practical tool that enables researchers to decipher spatially resolved cell-cell communication based on spatial transcriptome data.

摘要

空间分辨转录组学技术有可能提供额外的空间位置信息和组织图像,以便在组织稳态、发育和疾病进展等过程中更好地推断空间细胞-细胞相互作用(CCI)。然而,目前仍缺乏有效整合空间多模态数据以推断CCI的方法。在此,作者提出了一种通过共卷积整合特征的深度学习方法,称为SpaGraphCCI,通过将基因表达和图像特征投影到低维空间来有效整合来自不同SRT模态的数据。SpaGraphCCI在包括单细胞分辨率数据集(AUC达到0.860-0.907)和斑点分辨率数据集(AUC范围为0.880至0.965)在内的多个平台的数据集上都能取得显著性能。与现有的基于深度学习的空间细胞通信推理方法相比,SpaGraphCCI表现出更好的性能。SpaGraphCCI对高噪声具有鲁棒性,能够有效提高CCI的推理能力。我们在一个人类乳腺癌数据集上进行了测试,结果表明SpaGraphCCI不仅可以识别近端细胞通信,还能推断新的远端相互作用。总之,SpaGraphCCI提供了一个实用工具,使研究人员能够基于空间转录组数据解读空间分辨的细胞-细胞通信。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8272/11771809/5d3d604c04f7/SYB2-19-e70000-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验