Ji Kaiyuan, Wu Zhihan, Han Jing, Jia Jun, Zhai Guangtao, Liu Jiannan
School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.
Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:250-258. doi: 10.1007/978-3-031-83274-1_20. Epub 2025 Mar 3.
This article explores the potential of deep learning technologies for the automated identification and delineation of primary tumor volumes (GTVp) and metastatic lymph nodes (GTVn) in radiation therapy planning, specifically using MRI data. Utilizing the high-quality dataset provided by the 2024 MICCAI Head and Neck Tumor Segmentation Challenge, this study employs the 3DnnU-Net model for automatic tumor segmentation. Our experiments revealed that the model performs poorly with high background ratios, which prompted a retraining with selected data of specific background ratios to improve segmentation performance. The results demonstrate that the model performs well on data with low background ratios, but optimization is still needed for high background ratios. Additionally, the model shows better performance in segmenting GTVn compared to GTVp, with DSCagg scores of 0.6381 and 0.8064 for Task 1 and Task 2, respectively, during the final test phase. Future work will focus on optimizing the model and adjusting the network architecture, aiming to enhance the segmentation of GTVp while maintaining the effectiveness of GTVn segmentation to increase accuracy and reliability in clinical applications.
本文探讨了深度学习技术在放射治疗计划中自动识别和勾画原发性肿瘤体积(GTVp)和转移性淋巴结(GTVn)的潜力,具体是利用MRI数据。本研究利用2024年医学图像计算与计算机辅助干预国际会议(MICCAI)头颈肿瘤分割挑战赛提供的高质量数据集,采用3D nnU-Net模型进行肿瘤自动分割。我们的实验表明,该模型在背景比例较高时表现不佳,这促使我们使用特定背景比例的选定数据进行重新训练,以提高分割性能。结果表明,该模型在背景比例较低的数据上表现良好,但对于高背景比例仍需要优化。此外,该模型在分割GTVn方面比GTVp表现更好,在最终测试阶段,任务1和任务2的DSCagg分数分别为0.6381和0.8064。未来的工作将集中在优化模型和调整网络架构上,旨在增强GTVp的分割,同时保持GTVn分割的有效性,以提高临床应用中的准确性和可靠性。