Suppr超能文献

通过优化多域对抗网络提高疾病预测的公平性。

Enhancing fairness in disease prediction by optimizing multiple domain adversarial networks.

作者信息

Li Bin, Jiang Xiaoqian, Zhang Kai, Harmanci Arif O, Malin Bradley, Gao Hongchang, Shi Xinghua

机构信息

Department of Computer and Information Sciences, Temple University, Philadelphia, Pennsylvania, United States of America.

D. Bradley McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America.

出版信息

PLOS Digit Health. 2025 May 30;4(5):e0000830. doi: 10.1371/journal.pdig.0000830. eCollection 2025 May.

Abstract

Predictive models in biomedicine need to ensure equitable and reliable outcomes for the populations they are applied to. However, biases in AI models for medical predictions can lead to unfair treatment and widening disparities, underscoring the need for effective techniques to address these issues. However, current approaches struggle to simultaneously mitigate biases induced by multiple sensitive features in biomedical data. To enhance fairness, we introduce a framework based on a Multiple Domain Adversarial Neural Network (MDANN), which incorporates multiple adversarial components. In an MDANN, an adversarial module is applied to learn a fair pattern by negative gradients back-propagating across multiple sensitive features (i.e., the characteristics of patients that should not lead to a prediction outcome that may intentionally or unintentionally lead to disparities in clinical decisions). The MDANN applies loss functions based on the Area Under the Receiver Operating Characteristic Curve (AUC) to address the class imbalance, promoting equitable classification performance for minority groups (e.g., a subset of the population that is underrepresented or disadvantaged.) Moreover, we utilize pre-trained convolutional autoencoders (CAEs) to extract deep representations of data, aiming to enhance prediction accuracy and fairness. Combining these mechanisms, we mitigate multiple biases and disparities to provide reliable and equitable disease prediction. We empirically demonstrate that the MDANN approach leads to better accuracy and fairness in predicting disease progression using brain imaging data and mitigating multiple demographic biases for Alzheimer's Disease and Autism populations than other adversarial networks.

摘要

生物医学中的预测模型需要确保其应用对象群体能获得公平且可靠的结果。然而,用于医学预测的人工智能模型中的偏差可能导致不公平对待和差距扩大,这凸显了采用有效技术来解决这些问题的必要性。然而,当前的方法难以同时减轻生物医学数据中多个敏感特征所引发的偏差。为提高公平性,我们引入了一个基于多域对抗神经网络(MDANN)的框架,该框架包含多个对抗组件。在MDANN中,一个对抗模块通过跨多个敏感特征反向传播负梯度来学习公平模式(即患者的特征不应导致可能有意或无意在临床决策中造成差距的预测结果)。MDANN应用基于受试者工作特征曲线下面积(AUC)的损失函数来解决类别不平衡问题,促进少数群体(例如,代表性不足或处于不利地位的人群子集)的公平分类性能。此外,我们利用预训练的卷积自动编码器(CAE)来提取数据的深度表示,旨在提高预测准确性和公平性。通过结合这些机制,我们减轻了多种偏差和差距,以提供可靠且公平的疾病预测。我们通过实验证明,与其他对抗网络相比,MDANN方法在使用脑成像数据预测疾病进展以及减轻阿尔茨海默病和自闭症人群的多种人口统计学偏差方面具有更高的准确性和公平性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f928/12124548/6b26b3a56fd5/pdig.0000830.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验