Suppr超能文献

用于描述翡翠灰螟(鞘翅目:吉丁甲科)发生情况的多模型评估。

Multi-model assessments to characterize occurrences of emerald ash borer (Coleoptera: Buprestidae).

作者信息

Sambaraju Kishan R, Powell Kathryn A, Beaudoin André

机构信息

Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada.

Government of Yukon, Whitehorse, Yukon, Canada.

出版信息

J Insect Sci. 2025 May 9;25(3). doi: 10.1093/jisesa/ieaf032.

Abstract

Introduction and spread of nonindigenous species present a formidable threat to forest health. The emerald ash borer (EAB), Agrilus planipennis, is an East Asian-origin insect that has devastated ash (Fraxinus spp.) trees across the United States and parts of Canada since 2002. Proactive surveillance using high-performing predictive models could aid in mitigating pest risk. Predictor variables and modeling methods are important considerations in such analysis. Therefore, we assessed whether relevant single predictors, a combination of predictors grouped under a certain driver category, or multiple key predictors comprising several drivers, alter the goodness-of-fit of logistic regression models to EAB occurrence data (2002 to 2018) from Canada. The predictors used in models included spatial, topographic/positional, transport pathways/human hotspots, host-related factors, and climate-related variables. Using predictors from the best candidate logistic regression model, we tested the performance of 7 different model types including an ensemble model. Our findings showed that predictors from a wide range of drivers better characterized EAB occurrences than single predictors or a combination of predictors from any given driver category. In multi-model comparisons, random forest outperformed all other models, including the ensemble model. Elevation, infestation pressure, accumulated degree-days (>10 °C), and human population density were important predictors of EAB presence. Random forest and ensemble model forecasts for the city of Edmonton, Alberta, Canada, indicated an area of potential concern for EAB. Our research strongly underscores the utility of comparative multi-model approaches in invasive risk assessments that could have important implications for pest surveillance and management.

摘要

外来物种的引入和扩散对森林健康构成了巨大威胁。翡翠灰螟(EAB),即光肩星天牛(Agrilus planipennis),是一种原产于东亚的昆虫,自2002年以来已在美国和加拿大部分地区对灰树(白蜡属树种)造成了严重破坏。使用高性能预测模型进行主动监测有助于降低害虫风险。预测变量和建模方法是此类分析中的重要考虑因素。因此,我们评估了相关的单一预测变量、归为某一驱动因素类别的预测变量组合,或包含多个驱动因素的多个关键预测变量,是否会改变逻辑回归模型对来自加拿大的翡翠灰螟发生数据(2002年至2018年)的拟合优度。模型中使用的预测变量包括空间、地形/位置、运输路径/人类热点、寄主相关因素和气候相关变量。利用最佳候选逻辑回归模型中的预测变量,我们测试了7种不同模型类型的性能,包括一个集成模型。我们的研究结果表明,与单一预测变量或任何给定驱动因素类别的预测变量组合相比,来自广泛驱动因素的预测变量能更好地表征翡翠灰螟的发生情况。在多模型比较中,随机森林的表现优于所有其他模型,包括集成模型。海拔、侵染压力、累积度日(>10°C)和人口密度是翡翠灰螟存在的重要预测变量。对加拿大艾伯塔省埃德蒙顿市的随机森林和集成模型预测表明,存在翡翠灰螟潜在关注区域。我们的研究强烈强调了比较多模型方法在入侵风险评估中的实用性,这可能对害虫监测和管理具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12eb/12132038/de9ab74f0afc/ieaf032_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验