Suppr超能文献

纳米结构对聚磺酸甜菜碱(PSB)涂层水凝胶表面血液相容性的影响。

The impact of nanostructuring on the hemocompatibility of polysulfobetaine (PSB) coated hydrogel surfaces.

作者信息

Suriyanarayanan Subramanian, Nizam Nizreen Mohammad, Andersson Linnea I, Nilsson Per H, Aastrup Teodor, Palmqvist Ulrik, Nicholls Ian A

机构信息

Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University SE-391 82 Kalmar Sweden

Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet Sognsvannsveien 20 NO-0372 Oslo Norway.

出版信息

RSC Adv. 2025 Jun 10;15(25):19676-19686. doi: 10.1039/d5ra02435h.

Abstract

A series of nanostructured polysulfobetaine (PSB) hydrogel-coated surfaces were fabricated and tested for hemocompatibility in contact with human blood. PSB films were grafted onto SiO-coated silicon wafers or Au/quartz photochemically induced polymerization of a sulfobetaine-based monomer (SBMA, [2-(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide). An anodized aluminum oxide (AAO) membrane and latex beads (LB) were used as sacrificial template structures to synthesize polysulfobetaine nanowires (PSB) and hyperporous (PSB) networks, respectively. Two soft sacrificial templates, a liquid crystalline medium (LC) and amide-based non-ionic deep eutectic solvent (ni-DESs) providing one-dimensional ordered arrays and flickering clusters, respectively, were utilized to grow nanofibrous (PSB) and mesoporous (PSB) polysulfobetaine film. Selective dissolution of the sacrificial templates affords the transposed pattern of the template with long-range periodicity from nano to micro scale (20 to 400 nm). Electron micrograph studies revealed nanostructured materials in the form of wires (198 ± 5 nm), cavities (300 nm) and fibers (20 ± 2 nm) when AAO, LB and LC-medium were used as templates, while the polymer films prepared from ni-DESs (PSB), water (PSB) and methanol (PSB) were devoid of any noticeable topographical features. PSB-coated surfaces (except for PSB) inhibited non-specific adhesion of protein and biomolecules when presented with purified human proteins, , albumin, fibrinogen, hemoglobin, or human plasma, down to 20-125 ng cm as shown by the QCM studies. Interestingly, the hierarchical nanostructures in polymer films (PSB and PSB) resisted the adsorption of albumin and hemoglobin (<20 ng cm), even at 50 mg mL concentration. The hemocompatibility of the PSB nanostructures, analyzed after contact with human whole blood for one hour on the PSB and PSB, revealed reduced complement activation, quantified as the generation of C3bc fragments and terminal complement sC5b-9 complex formation, in comparison to acrylate glass. The nanowires of PSB showed significantly lower MPO release than the PSB surface, whereas no difference in platelet activation was seen between the surfaces. Compactly organized nanowires and fibers increase the water of hydration layers to strengthen the antifouling and hemocompatibility features, demonstrating the bio-inert nature of the PSB nanostructures. The inherent gelation (hydrophilicity) afforded by the PSB has substantial implications in designing bio-inert surfaces for hemocompatible devices.

摘要

制备了一系列纳米结构的聚磺酸甜菜碱(PSB)水凝胶涂层表面,并测试了其与人体血液接触时的血液相容性。通过光化学诱导磺酸甜菜碱基单体(SBMA,[2-(甲基丙烯酰氨基)丙基]二甲基(3-磺丙基)氢氧化铵)聚合,将PSB膜接枝到SiO涂层的硅片或Au/石英上。分别使用阳极氧化铝(AAO)膜和乳胶珠(LB)作为牺牲模板结构来合成聚磺酸甜菜碱纳米线(PSB)和高孔隙率(PSB)网络。利用两种软牺牲模板,即分别提供一维有序阵列和闪烁簇的液晶介质(LC)和酰胺基非离子型低共熔溶剂(ni-DESs),来生长纳米纤维状(PSB)和介孔(PSB)聚磺酸甜菜碱膜。牺牲模板的选择性溶解提供了具有从纳米到微米尺度(20至400 nm)长程周期性的模板转置图案。电子显微镜研究显示,当使用AAO、LB和LC介质作为模板时,纳米结构材料呈现出线状(198±5 nm)、孔洞状(300 nm)和纤维状(20±2 nm)的形式,而由ni-DESs(PSB)、水(PSB)和甲醇(PSB)制备的聚合物膜没有任何明显的形貌特征。QCM研究表明,当与纯化的人类蛋白质、白蛋白、纤维蛋白原、血红蛋白或人类血浆接触时,PSB涂层表面(除PSB外)可抑制蛋白质和生物分子的非特异性粘附,低至20 - 125 ng/cm²。有趣的是,聚合物膜(PSB和PSB)中的分级纳米结构即使在50 mg/mL浓度下也能抵抗白蛋白和血红蛋白的吸附(<20 ng/cm²)。在PSB和PSB上与人体全血接触一小时后分析PSB纳米结构的血液相容性,结果显示与丙烯酸酯玻璃相比,补体激活减少,以C3bc片段的产生和末端补体sC5b-9复合物的形成来量化。PSB的纳米线显示出比PSB表面显著更低的MPO释放,而表面之间在血小板活化方面没有差异。紧密排列的纳米线和纤维增加了水合层的水量,以增强抗污和血液相容性特征,证明了PSB纳米结构的生物惰性本质。PSB所具有的固有凝胶化(亲水性)在设计用于血液相容性装置的生物惰性表面方面具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验