Suppr超能文献

基于多尺度注意力门控和增强位置信息的遥感影像建筑物提取

Building extraction from remote sensing images based on multi-scale attention gate and enhanced positional information.

作者信息

Xu Rui, Mao Renzhong, Zhuang Zhenxing, Huang Fenghua, Yang Yihui

机构信息

School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, Fujian, China.

Fujian Key Laboratory of Spatial Information Perception and Intelligent Processing (Yango University), Fuzhou, Fujian, China.

出版信息

PeerJ Comput Sci. 2025 Apr 21;11:e2826. doi: 10.7717/peerj-cs.2826. eCollection 2025.

Abstract

Extracting buildings from high-resolution remote sensing images is currently a research hotspot in the field of remote sensing applications. Deep learning methods have significantly improved the accuracy of building extraction, but there are still deficiencies such as blurred edges, incomplete structures and loss of details in the extraction results. To obtain accurate contours and clear boundaries of buildings, this article proposes a novel building extraction method utilizing multi-scale attention gate and enhanced positional information. By employing U-Net as the main framework, this article introduces a multi-scale attention gate module in the encoder, which effectively improves the ability to capture multi-scale information, and designs a module in the decoder to enhance the positional information of the features, allowing for more precise localization and extraction of the shape and edge information of buildings. To validate the effectiveness of the proposed method, comprehensive evaluations were conducted on three benchmark datasets, Massachusetts, WHU, and Inria. The comparative analysis with six state-of-the-art models (SegNet, DeepLabv3+, U-Net, DSATNet, SDSC-Unet, and BuildFormer) demonstrates consistent performance improvements in intersection over union (IoU) metrics. Specifically, the proposed method achieves IoU increments of 2.19%, 3.31%, 3.10%, 2.00%, 3.35%, and 3.48% respectively on Massachusetts dataset, 1.26%, 4.18%, 1.18%, 2.01%, 2.03%, and 2.29% on WHU dataset, and 0.87%, 5.25%, 2.02%, 5.55%, 4.39%, and 1.18% on Inria dataset. The experimental results indicate that the proposed method can effectively integrate multi-scale features and optimize the extracted building edges, achieving superior performance compared to existing methodologies in building extraction tasks.

摘要

从高分辨率遥感影像中提取建筑物是当前遥感应用领域的研究热点。深度学习方法显著提高了建筑物提取的精度,但提取结果仍存在边缘模糊、结构不完整和细节丢失等不足。为了获得建筑物准确的轮廓和清晰的边界,本文提出了一种利用多尺度注意力门和增强位置信息的新型建筑物提取方法。本文以U-Net作为主要框架,在编码器中引入多尺度注意力门模块,有效提高了捕获多尺度信息的能力,并在解码器中设计了一个模块来增强特征的位置信息,从而更精确地定位和提取建筑物的形状和边缘信息。为了验证所提方法的有效性,在三个基准数据集(马萨诸塞州数据集、武汉大学数据集和Inria数据集)上进行了综合评估。与六个最先进的模型(SegNet、DeepLabv3+、U-Net、DSATNet、SDSC-Unet和BuildFormer)的对比分析表明,在交并比(IoU)指标上性能持续提升。具体而言,所提方法在马萨诸塞州数据集上的IoU分别提高了2.19%、3.31%、3.10%、2.00%、3.35%和3.48%,在武汉大学数据集上分别提高了1.26%、4.18%、1.18%、2.01%、2.03%和2.29%,在Inria数据集上分别提高了0.87%、5.25%、2.02%、5.55%、4.39%和1.18%。实验结果表明,所提方法能够有效整合多尺度特征并优化提取的建筑物边缘,在建筑物提取任务中比现有方法具有更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d6/12190511/1b5ebe70e7ac/peerj-cs-11-2826-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验