Zhou Juan, Wei Yiming, Li Xiong, Zhou Weiqiang, Tao Ruiyang, Hua Yi, Liu Hongwei
School of Information and Software Engineering, East China Jiaotong University, Nanchang, 330013, China.
Sci Rep. 2025 Jul 2;15(1):23311. doi: 10.1038/s41598-025-05568-y.
Alzheimer's disease (AD) constitutes a neurodegenerative disorder predominantly observed in the geriatric population. If AD can be diagnosed early, both in terms of prevention and treatment, it is very beneficial to patients. Therefore, our team proposed a novel deep learning model named 3D-CNN-VSwinFormer. The model consists of two components: the first part is a 3D CNN equipped with a 3D Convolutional Block Attention Module (3D CBAM) module, and the second part involves a fine-tuned Video Swin Transformer. Our investigation extracts features from subject-level 3D Magnetic resonance imaging (MRI) data, retaining only a single 3D MRI image per participant. This method circumvents data leakage and addresses the issue of 2D slices failing to capture global spatial information. We utilized the ADNI dataset to validate our proposed model. In differentiating between AD patients and cognitively normal (CN) individuals, we achieved accuracy and AUC values of 92.92% and 0.9660, respectively. Compared to other studies on AD and CN recognition, our model yielded superior results, enhancing the efficiency of AD diagnosis.
阿尔茨海默病(AD)是一种主要在老年人群中观察到的神经退行性疾病。如果能在预防和治疗方面早期诊断出AD,对患者非常有益。因此,我们的团队提出了一种名为3D-CNN-VSwinFormer的新型深度学习模型。该模型由两个部分组成:第一部分是配备了3D卷积块注意力模块(3D CBAM)的3D卷积神经网络,第二部分是经过微调的视频Swin Transformer。我们的研究从个体层面的3D磁共振成像(MRI)数据中提取特征,每个参与者仅保留一张3D MRI图像。这种方法避免了数据泄露,并解决了二维切片无法捕捉全局空间信息的问题。我们利用阿尔茨海默病神经影像倡议(ADNI)数据集来验证我们提出的模型。在区分AD患者和认知正常(CN)个体时,我们分别获得了92.92%的准确率和0.9660的曲线下面积(AUC)值。与其他关于AD和CN识别的研究相比,我们的模型产生了更优的结果,提高了AD诊断的效率。