Suppr超能文献

用于分子性质预测的药效团约束异构图变换器模型

Pharmacophoric-constrained heterogeneous graph transformer model for molecular property prediction.

作者信息

Jiang Yinghui, Jin Shuting, Jin Xurui, Xiao Xianglu, Wu Wenfan, Liu Xiangrong, Zhang Qiang, Zeng Xiangxiang, Yang Guang, Niu Zhangming

机构信息

MindRank AI Ltd., 310000, Hangzhou, China.

School of Informatics, Xiamen University, 361005, Xiamen, China.

出版信息

Commun Chem. 2023 Apr 3;6(1):60. doi: 10.1038/s42004-023-00857-x.

Abstract

Informative representation of molecules is a crucial prerequisite in AI-driven drug design and discovery. Pharmacophore information including functional groups and chemical reactions can indicate molecular properties, which have not been fully exploited by prior atom-based molecular graph representation. To obtain a more informative representation of molecules for better molecule property prediction, we propose the Pharmacophoric-constrained Heterogeneous Graph Transformer (PharmHGT). We design a pharmacophoric-constrained multi-views molecular representation graph, enabling PharmHGT to extract vital chemical information from functional substructures and chemical reactions. With a carefully designed pharmacophoric-constrained multi-view molecular representation graph, PharmHGT can learn more chemical information from molecular functional substructures and chemical reaction information. Extensive downstream experiments prove that PharmHGT achieves remarkably superior performance over the state-of-the-art models the performance of our model is up to 1.55% in ROC-AUC and 0.272 in RMSE higher than the best baseline model) on molecular properties prediction. The ablation study and case study show that our proposed molecular graph representation method and heterogeneous graph transformer model can better capture the pharmacophoric structure and chemical information features. Further visualization studies also indicated a better representation capacity achieved by our model.

摘要

分子的信息表示是人工智能驱动的药物设计与发现的关键前提。包括官能团和化学反应在内的药效团信息可以指示分子性质,而这些性质在以前基于原子的分子图表示中尚未得到充分利用。为了获得更具信息性的分子表示以更好地预测分子性质,我们提出了药效团约束的异构图变换器(PharmHGT)。我们设计了一种药效团约束的多视图分子表示图,使PharmHGT能够从功能子结构和化学反应中提取重要的化学信息。通过精心设计的药效团约束多视图分子表示图,PharmHGT可以从分子功能子结构和化学反应信息中学习更多化学信息。大量的下游实验证明,在分子性质预测方面,PharmHGT的性能显著优于现有模型(我们模型的性能在ROC-AUC中比最佳基线模型高出1.55%,在RMSE中高出0.272)。消融研究和案例研究表明,我们提出的分子图表示方法和异构图变换器模型能够更好地捕捉药效团结构和化学信息特征。进一步的可视化研究也表明我们的模型具有更好的表示能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a1/10070395/9fce0d89c61b/42004_2023_857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验