Suppr超能文献

濒危的印度胶木:利用机器学习模型评估气候变化对一种珍贵树种分布的影响

Tecomella undulata under threat: The impact of climate change on the distribution of a valuable tree species using a machine learning model.

作者信息

Ghafouri Ehsan, Ghanbarian Gholamabbas, Cerdà Artemi, Ghafouri Saeideh

机构信息

Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, Iran.

Department of Geography, Soil Erosion and Degradation Research Group, University of Valencia, Valencia, Spain.

出版信息

PLoS One. 2025 Jul 9;20(7):e0326609. doi: 10.1371/journal.pone.0326609. eCollection 2025.

Abstract

Climate change has emerged as a significant driver of biodiversity loss, with profound implications for species distribution. This study assessed the current and future distribution of Tecomella undulata (Desert teak), an economically and medicinally valuable species facing threats from climate change. MaxEnt model, built using 44 occurrence points and environmental data including bioclimatic factors and Digital Elevation Model (DEM), demonstrated an impressive Area Under the Curve (AUC) value of around 0.91 and a True Skill Statistic (TSS) value of 0.79, indicating excellent predictive performance. Temperature seasonality (Bio4) emerged as the most crucial variable, contributing 35.9% to the modeling, followed by the mean temperature of the wettest quarter (Bio8) and precipitation seasonality (Bio15). The habitat suitability maps showed a strong presence of T. undulata in the southern regions of Iran, with Fars and Bushehr provinces being particularly conducive to its growth. Future projections under Shared Socioeconomic Pathways (SSP) scenarios SSP245 and SSP585 for 2030, 2050, 2070, and 2090 suggested a decline in suitable habitats for T. undulata, with high-suitability areas projected to decrease by up to 98% and unsuitable habitats predicted to increase. The study underscores the urgency for tailored conservation measures to mitigate the impacts of climate change on this valuable species.

摘要

气候变化已成为生物多样性丧失的一个重要驱动因素,对物种分布具有深远影响。本研究评估了Tecomella undulata(沙漠柚木)的当前和未来分布,该物种具有经济和药用价值,正面临气候变化的威胁。利用44个出现点和包括生物气候因子及数字高程模型(DEM)在内的环境数据构建的MaxEnt模型,展示了令人印象深刻的约0.91的曲线下面积(AUC)值和0.79的真实技能统计量(TSS)值,表明具有出色的预测性能。温度季节性(Bio4)成为最关键的变量,对建模的贡献为35.9%,其次是最湿润季度的平均温度(Bio8)和降水季节性(Bio15)。栖息地适宜性地图显示,伊朗南部地区有大量的沙漠柚木,法尔斯省和布什尔省尤其有利于其生长。在共享社会经济路径(SSP)情景SSP245和SSP585下对2030年、2050年、2070年和2090年的未来预测表明,沙漠柚木的适宜栖息地将减少,高适宜性区域预计将减少多达98%,不适宜栖息地预计将增加。该研究强调了采取针对性保护措施以减轻气候变化对这一珍贵物种影响的紧迫性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927d/12240331/a27d9ea6f9eb/pone.0326609.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验