Shen Chen, Lian Chunfeng, Zhang Wanqing, Wang Fan, Zhang Jianhua, Fan Shuanliang, Wei Xin, Wang Gongji, Li Kehan, Mu Hongshu, Wu Hao, Liang Xinggong, Ma Jianhua, Wang Zhenyuan
Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Nat Commun. 2025 Jul 23;16(1):6773. doi: 10.1038/s41467-025-62060-x.
Forensic pathology plays a vital role in determining the cause and manner of death through macroscopic and microscopic post-mortem examinations. However, the field faces challenges such as variability in outcomes, labor-intensive processes, and a shortage of skilled professionals. This paper introduces SongCi, a visual-language model tailored for forensic pathology. Leveraging advanced prototypical cross-modal self-supervised contrastive learning, SongCi improves the accuracy, efficiency, and generalizability of forensic analyses. Pre-trained and validated on a large multi-center dataset comprising over 16 million high-resolution image patches, 2, 228 vision-language pairs from post-mortem whole slide images, gross key findings, and 471 unique diagnostic outcomes, SongCi demonstrates superior performance over existing multi-modal models and computational pathology foundation models in forensic tasks. It matches experienced forensic pathologists' capabilities, significantly outperforms less experienced practitioners, and offers robust multi-modal explainability.
法医病理学通过宏观和微观尸检在确定死亡原因和方式方面发挥着至关重要的作用。然而,该领域面临着诸如结果变异性、劳动密集型流程以及熟练专业人员短缺等挑战。本文介绍了宋词,这是一种专为法医病理学量身定制的视觉语言模型。利用先进的原型跨模态自监督对比学习,宋词提高了法医分析的准确性、效率和通用性。在一个由超过1600万个高分辨率图像块、来自尸检全切片图像的2228个视觉语言对、大体关键发现以及471种独特诊断结果组成的大型多中心数据集上进行预训练和验证后,宋词在法医任务中展现出优于现有多模态模型和计算病理学基础模型的性能。它与经验丰富的法医病理学家的能力相当,显著优于经验不足的从业者,并提供强大的多模态可解释性。